**IRIG STANDARD 200-16** 



### **IRIG SERIAL TIME CODE FORMATS**

#### ABERDEEN TEST CENTER DUGWAY PROVING GROUND REAGAN TEST SITE WHITE SANDS MISSILE RANGE YUMA PROVING GROUND

#### NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION NAVAL AIR WARFARE CENTER WEAPONS DIVISION NAVAL UNDERSEA WARFARE CENTER DIVISION, KEYPORT NAVAL UNDERSEA WARFARE CENTER DIVISION, NEWPORT PACIFIC MISSILE RANGE FACILITY

#### 30TH SPACE WING 45TH SPACE WING 96TH TEST WING 412TH TEST WING ARNOLD ENGINEERING DEVELOPMENT COMPLEX

#### NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

## DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE DISTRIBUTION IS UNLIMITED

## **IRIG SERIAL TIME CODE FORMATS**

August 2016

Prepared by

## TIMING COMMITTEE TELECOMMUNICATIONS AND TIMING GROUP

Published by

Secretariat Range Commanders Council U.S. Army White Sands Missile Range, New Mexico 88002-5110

# **Table of Contents**

| Prefaceix                                     |                                                           |                                                                                                                                                                                                                    |  |  |
|-----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Acron                                         | yms                                                       | xi                                                                                                                                                                                                                 |  |  |
| Chapt                                         | er 1.                                                     | Introduction1-1                                                                                                                                                                                                    |  |  |
| Chapt                                         | er 2.                                                     | General Description of this Standard2-1                                                                                                                                                                            |  |  |
| Chapt                                         | er 3.                                                     | General Description of Time Code Formats                                                                                                                                                                           |  |  |
| 3.1<br>3.2                                    | Pulse I<br>Jitter                                         | Rise Time                                                                                                                                                                                                          |  |  |
| 3.3<br>3.4                                    | Bit Rat<br>Time F                                         | Frame, Time Frame Reference, and Time Frame Rates                                                                                                                                                                  |  |  |
| 3.5<br>3.6<br>3.7                             | Time C                                                    | an Identifiers       3-2         Code Words       3-2         Sime of Veer Code Word       3-2                                                                                                                     |  |  |
| 3.7<br>3.8<br>3.9                             | Contro<br>Index                                           | I Functions                                                                                                                                                                                                        |  |  |
| 3.10                                          | Ampli                                                     | tude-Modulated Carrier                                                                                                                                                                                             |  |  |
| Chapt                                         | er 4.                                                     | Detailed Description of Formats4-1                                                                                                                                                                                 |  |  |
| 4.1<br>4.2<br>4.3<br>4.4                      | Serial<br>Examp<br>Manch<br>Manch                         | Time Code Formats (A, B, D, E, and G)       4-1         bles of Typical Modulated Carrier Signal Formats for IRIG A, B, E, and G.       4-2         ester II Coding       4-5         ester II Decoding.       4-7 |  |  |
| Chapt                                         | er 5.                                                     | Detailed Description of Time Codes                                                                                                                                                                                 |  |  |
| 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7 | Introdu<br>Format<br>Format<br>Format<br>Format<br>Format | Inction       .5-1         t A       .5-1         t B       .5-5         t D       .5-9         t E       .5-12         t G       .5-16         t H       .5-20                                                    |  |  |
| Appen                                         | dix A.                                                    | Leap Year/Leap Second Conventions                                                                                                                                                                                  |  |  |
| A.1<br>A.2                                    | Leap Y<br>Leap S                                          | Vear Convention                                                                                                                                                                                                    |  |  |
| Appen                                         | dix B.                                                    | BCD Count/Binary CountB-1                                                                                                                                                                                          |  |  |
| Appen                                         | dix C.                                                    | Hardware Design ConsiderationsC-1                                                                                                                                                                                  |  |  |
| Appen                                         | dix D.                                                    | GlossaryD-1                                                                                                                                                                                                        |  |  |

| D.1   | Definitions of Terms And UsageDefinitions of Terms And UsageDefinitions of Terms And Usage | -1 |
|-------|--------------------------------------------------------------------------------------------|----|
| Appen | lix E. CitationsE                                                                          | -1 |

# List of Figures

| Figure 3-1. | Typical Modulated Carrier Signal                                     | 3-5    |
|-------------|----------------------------------------------------------------------|--------|
| Figure 4-1. | Serial Time Code Formats                                             | 4-1    |
| Figure 4-2. | IRIG B Coding Comparisons: Level Shift, 1 khz am, and Modified       |        |
| -           | Manchester                                                           | 4-6    |
| Figure 4-3. | Modified Manchester Coding                                           | 4-6    |
| Figure 4-4. | A Manchester II Encoded Sequence                                     | 4-7    |
| Figure 5-1. | Format A: BCD Time-of-Year in Days, Hours, Minutes, Seconds,         |        |
|             | Fractions of Seconds, Year, Straight Binary Seconds Time-of-Day, and |        |
|             | Control Bits                                                         | 5-2    |
| Figure 5-2. | Format B: BCD Time-of-Year in Days, Hours, Minutes, Seconds, Year,   |        |
|             | Straight Binary Seconds Time-of-Day, and Control Bits.               | 5-6    |
| Figure 5-3. | Format D: BCD Time-of-Year in Days and Hours and Control Bits        | . 5-10 |
| Figure 5-4. | Format E: BCD Time-of-Year in Days, Hours, Minutes, Seconds, and     |        |
|             | Year and Control Bits                                                | . 5-13 |
| Figure 5-5. | Format G: BCD Time-of-Year in Days, Hours, Minutes, Seconds, and     |        |
|             | Year and Fractions-of-Seconds, and Control Bits                      | . 5-17 |
| Figure 5-6. | Format H: BCD Time-of-Year in Days, Hours, Minutes, and Control Bits | . 5-21 |

# List of Tables

| Table 3-1.  | Bit Rates And Index Count Intervals Of The Time Code Formats      |      |
|-------------|-------------------------------------------------------------------|------|
| Table 3-2.  | Time Frame Rates And Time Frame Intervals Of The Formats          |      |
| Table 3-3.  | Position Identifiers And Index Count Locations                    |      |
| Table 3-4.  | Number of Available Control Bits in Each Time Code Format         |      |
| Table 3-5.  | Typical Modulated Carrier Signal Formats for A, B, E, D, G, and H |      |
| Table 4-1.  | Permissible Code Formats (A, B, D, E, G, H)                       |      |
| Table 4-2.  | Typical Modulated Carrier Signal Formats (IRIG A)                 |      |
| Table 4-3.  | Typical Modulated Carrier Signal Formats (IRIG B)                 |      |
| Table 4-4.  | Typical Modulated Carrier Signal Formats (IRIG E)                 |      |
| Table 4-5.  | Typical Modulated Carrier Signal Formats (IRIG G)                 |      |
| Table 4-6.  | Truth Table Is A Modulo-2 Adder                                   |      |
| Table 5-1.  | Format A, Signal A000                                             | 5-3  |
| Table 5-2.  | IRIG-A Control Bit Assignment for Year Information                |      |
| Table 5-3.  | Parameters for Format A.                                          |      |
| Table 5-4.  | Format B, Signal B000                                             | 5-7  |
| Table 5-5.  | IRIG-B Control Bit Assignment for Year Information                | 5-8  |
| Table 5-6.  | Parameters for Format B                                           | 5-9  |
| Table 5-7.  | Format D, Signal D001                                             | 5-11 |
| Table 5-8.  | Parameters for Format D                                           | 5-12 |
| Table 5-9.  | Format E, Signal E001                                             | 5-14 |
| Table 5-10. | IRIG-E Control Bit Assignment For Year Information                | 5-15 |
|             |                                                                   |      |

| Table 5-11. | Parameters for Format E                                    |     |
|-------------|------------------------------------------------------------|-----|
| Table 5-12. | Format G, Signal G001                                      |     |
| Table 5-13. | IRIG-G Control Bit Assignment for Year Information         |     |
| Table 5-14. | Parameters For Format G                                    |     |
| Table 5-15. | Format H, Signal H001                                      |     |
| Table 5-16. | Parameters for Format H                                    |     |
| Table B-1.  | BCD Count (8n 4n 2n 1n)                                    | B-1 |
| Table B-2.  | Binary Count (2n)                                          | B-1 |
| Table C-1.  | Time Code Generator Hardware Minimum Design Considerations | C-1 |

## Preface

IRIG Standard 200 was last updated in September 2004 and added year information for the IRIG timecodes. This 2016 edition of the standard corrects minor technical errors throughout the document. The task of revising this standard was assigned to the Telecommunications and Timing Group of the Range Commanders Council.

All U.S. Government ranges and facilities should adhere to this standard where serial time codes are generated for correlation of data with time.

Please direct any questions regarding this document to the RCC Secretariat as shown below.

Secretariat, Range Commanders Council ATTN: CSTE-WS-RCC 1510 Headquarters Avenue White Sands Missile Range, New Mexico 88002-5110 Phone: DSN 258-1107 Com (575) 678-1107 Fax: DSN 258-7519 Com (575) 678-7519 Email: <u>usarmy.wsmr.atec.list.rcc@mail.mil</u>

# Acronyms

| μs    | microsecond $(10^{-6}s)$                      |
|-------|-----------------------------------------------|
| BCD   | binary coded decimal                          |
| BIH   | Bureau International de l'Heure               |
| CF    | control function                              |
| d     | day                                           |
| dc    | direct current                                |
| DoD   | Department of Defense                         |
| fph   | frames per hour                               |
| fpm   | frames per minute                             |
| fps   | frames per second                             |
| GPS   | Global Positioning System                     |
| h     | hour                                          |
| Hz    | hertz                                         |
| k     | 1000                                          |
| kHz   | kilohertz (1000 Hz)                           |
| LSB   | least significant bit                         |
| m     | minute                                        |
| mo    | month                                         |
| ms    | millisecond $(10^{-3}s)$                      |
| MSB   | most significant bit                          |
| NASA  | National Aeronautics and Space Administration |
| NRZ-L | non-return-to-zero level                      |
| ns    | nanosecond $(10^{-9}s)$                       |
| pph   | pulses per hour                               |
| ppm   | pulses per minute                             |
| pps   | pulses per second                             |
| S     | second                                        |
| SBS   | straight binary second(s)                     |
| TAI   | International Atomic Time                     |
| TOD   | time-of-day                                   |
| TOY   | time-of-year                                  |
| USNO  | United States Naval Observatory               |
| UTC   | Coordinated Universal Time                    |
| у     | year                                          |
| -     | -                                             |

## **CHAPTER 1**

### Introduction

Modern-day electronic systems such as communication systems, data handling systems, and missile and spacecraft tracking systems require time-of-day (TOD) and time-of-year (TOY) information for correlation of data with time. Parallel and serial formatted time codes are used to efficiently interface the timing system output with the user system. Parallel time codes are defined in IRIG Standard 205-87.<sup>1</sup> Standardization of time codes is necessary to ensure system compatibility among the various ranges, ground tracking networks, spacecraft and missile projects, data reduction facilities, and international cooperative projects.

This standard defines the characteristics of six serial time codes presently used by the U.S. Government and private industry. <u>Year</u> information has been added to IRIG codes A, B, E, and G. It should be noted that this standard reflects the present state of the art in serial time code formatting and is not intended to constrain proposals for new serial time codes with greater resolution.

All Department of Defense (DoD) test ranges, facilities, and other government agencies such as the National Aeronautics and Space Administration (NASA) maintain Coordinated Universal Time (UTC) referenced to the United States Naval Observatory (USNO) Master Clock. The designation for time in the United States is UTC (USNO).

<sup>&</sup>lt;sup>1</sup> Range Commanders Council. *IRIG Standard Parallel Binary and Parallel Binary Coded Decimal Time Code Formats*. RCC 205-87. August 1987. May be superseded by update. Retrieved on 29 July 2015. Available to RCC members with Private Page access at <u>https://wsdmext.wsmr.army.mil/site/rccpri/Publications/205-87\_IRIG\_Standard\_Parallel\_Binary\_and\_Parallel\_Binary\_Coded\_Decimal\_Time\_Code\_Formats/.</u>

# **CHAPTER 2**

## **General Description of this Standard**

This standard consists of a family of rate-scaled serial time codes with formats containing up to four coded expressions or words. All time codes contain control functions (CFs) that are reserved for encoding various controls, identification, and other special-purpose functions. Time codes A, B, D, E, G, and H are described below.

- Time code A has a time frame of 0.1 seconds with an index count of 1 millisecond and contains TOY in days, hours, minutes, seconds, tenths of seconds, and year information in a binary coded decimal (BCD) format and seconds-of-day in straight binary seconds (SBS).
- Time code B has a time frame of 1 second with an index count of 10 milliseconds and contains TOY in days, hours, minutes, seconds, and year information in a BCD format and seconds-of-day in SBS.
- Time code D has a time frame of 1 hour with an index count of 1 minute and contains TOY information in days and hours in a BCD format.
- Time code E has a time frame of 10 seconds with an index count of 100 milliseconds and contains TOY in days, hours, minutes, seconds, and year information in a BCD format.
- Time code G has a time frame of 0.01 seconds with an index count of 0.1 milliseconds and contains TOY information in days, hours, minutes, seconds, tenths, and hundredths of seconds and year information in a BCD format.
- Time code H has a time frame of 1 minute with an index count of 1 second and contains TOY information in days, hours, and minutes in a BCD format.

# CHAPTER 3

# **General Description of Time Code Formats**

The time code formats are described in the paragraphs below. Additional reference information is provided at the end of this document on the related topics of leap year and leap second conventions (<u>Appendix A</u>), BCD count data and binary count data (<u>Appendix B</u>), and time code generator hardware design considerations (<u>Appendix C</u>).

### 3.1 Pulse Rise Time

The specified pulse (direct current [dc] level shift bit) rise time shall be obtained between the 10 and 90% amplitude points (see <u>Appendix C</u>).

### 3.2 Jitter

The modulated code is defined as  $\leq 1\%$  at the carrier frequency. The dc level shift code is defined as the pulse-to-pulse variation at the 50% amplitude points on the leading edges of successive pulses or bits (see <u>Appendix C</u>).

### 3.3 Bit Rates and Index Count

Each pulse in a time code word/subword is called a bit. The on-time reference point for all bits is the leading edge of the bit. The repetition rate at which the bits occur is called the bit rate. Each bit has an associated numerical index count identification. The time interval between the leading edge of two consecutive bits is the index count interval. The index count begins at the frame reference point (the leading edge of the reference bit  $[P_r]$ ) with index count 0 and increases one count each index count until the time frame is complete.

The bit rates and index count intervals of the time code formats are shown in <u>Table 3-1</u>.

| Table 3-1.         Bit Rates And Index Count Intervals Of The Time Code Formats |                       |                      |  |  |  |  |  |
|---------------------------------------------------------------------------------|-----------------------|----------------------|--|--|--|--|--|
| Format                                                                          | Bit Rate <sup>1</sup> | Index Count Interval |  |  |  |  |  |
| А                                                                               | 1 kpps                | 1 millisecond        |  |  |  |  |  |
| В                                                                               | 100 pps               | 10 milliseconds      |  |  |  |  |  |
| D                                                                               | 1 ppm                 | 1 minute             |  |  |  |  |  |
| Е                                                                               | 10 pps                | 0.1 second           |  |  |  |  |  |
| G                                                                               | 10 kpps               | 0.1 millisecond      |  |  |  |  |  |
| Н                                                                               | 1 pps                 | 1 second             |  |  |  |  |  |
| <sup>1</sup> See the <u>Acronyms</u> list for bit rate definitions.             |                       |                      |  |  |  |  |  |

#### 3.4 Time Frame, Time Frame Reference, and Time Frame Rates

A time code frame begins with a frame reference marker  $P_0$  (position identifier) followed by a reference bit  $P_r$  with each having duration equal to 0.8 of the index count interval of the respective code. The on-time reference point of a time frame is the leading edge of the reference bit  $P_r$ . The repetition rate at which the time frames occur is called the time frame rate. The time frame rates and time frame intervals of the formats are shown in <u>Table 3-2</u>.

| Table 3-2.         Time Frame Rates And Time Frame Intervals Of The Formats |                 |                     |  |  |  |  |
|-----------------------------------------------------------------------------|-----------------|---------------------|--|--|--|--|
| Format                                                                      | Time Frame Rate | Time Frame Interval |  |  |  |  |
| А                                                                           | 10 fps          | 0.1 second          |  |  |  |  |
| В                                                                           | 1 fps           | 1 second            |  |  |  |  |
| D                                                                           | 1 fph           | 1 hour              |  |  |  |  |
| E                                                                           | 6 fpm           | 10 seconds          |  |  |  |  |
| G                                                                           | 100 fps         | 10 ms               |  |  |  |  |
| Н                                                                           | 1 fpm           | 1 minute            |  |  |  |  |

#### 3.5 **Position Identifiers**

Position identifiers have durations equal to 0.8 of the index count interval of the respective code. The leading edge of the position identifier  $P_0$  occurs one index count interval before the frame reference point  $P_r$  and the succeeding position identifiers ( $P_1$ ,  $P_2$ ... $P_0$ ) occur every succeeding tenth index count interval. The repetition rate at which the position identifiers occur is always 0.1 of the time format bit rate.

#### 3.6 Time Code Words

The two time code words employed in this standard are:

- BCD TOY and year;
- SBS TOD (seconds-of-day).

All time code formats are pulse-width coded. A binary (1) bit has duration equal to 0.5 of the index count interval and a binary (0) bit has duration equal to 0.2 of the index count interval. The BCD TOY code reads 0 hours, minutes, seconds, and fraction of seconds at 2400 each day and reads day 001 at 2400 of day 365 or day 366 in a leap year. The year code counts year and cycles to the next year on January 1<sup>st</sup> of each year and will count to year 2099. The SBS TOD code reads 0 seconds at 2400 each day excluding leap second days when a second may be added or subtracted.

#### 3.7 BCD Time-of-Year Code Word

The BCD TOY and year code word consists of subwords in days, hours, minutes, seconds, and year with fractions of a second in a BCD representation and TOD in SBS of day. The position identifiers preceding the decimal digits and the index count locations of the decimal digits (if present) are in <u>Table 3-3</u>.

| Table 3-3.         Position Identifiers And Index Count Locations |                                              |                                        |  |  |  |  |
|-------------------------------------------------------------------|----------------------------------------------|----------------------------------------|--|--|--|--|
| <b>BCD Code Decimal Digits</b>                                    | Decimal Digits Follow<br>Position Identifier | Digits Occupy Index<br>Count Positions |  |  |  |  |
| Units of Seconds                                                  | Pr                                           | 1-4                                    |  |  |  |  |
| Tens of Seconds                                                   |                                              | 6-8                                    |  |  |  |  |
| Units of Minutes                                                  | $\mathbf{P}_1$                               | 10-13                                  |  |  |  |  |
| Tens of Minutes                                                   |                                              | 15-17                                  |  |  |  |  |

IRIG Serial Time Code Formats, RCC 200-16, August 2016

| Units of Hours        | P <sub>2</sub> | 20-23 |
|-----------------------|----------------|-------|
| Tens of Hours         |                | 25-26 |
| Units of Days         | P3             | 30-33 |
| Tens of Days          |                | 35-38 |
| Hundreds of Days      | P4             | 40-41 |
| Tenths of Seconds     |                | 45-48 |
| For Code G            | P5             |       |
| Hundredths of Seconds |                | 50-53 |
| For Codes A, B, and E | P <sub>5</sub> |       |
| Units of Years        |                | 50-53 |
| Tens of Years         |                | 55-58 |
| For Code G            | P <sub>6</sub> |       |
| Units of Years        |                | 60-63 |
| Tens of Years         |                | 65-68 |

Formats A, B, and E include an optional SBS time code word in addition to a BCD TOY time and year code word. The SBS word follows position identifier P<sub>8</sub> beginning with the LSB  $(2^0)$  at index count 80 and progressing to the MSB  $(2^{16})$  at index count 97 with a position identifier P<sub>9</sub> occurring between the ninth  $(2^8)$  and tenth  $(2^9)$  binary bits.

Formats A, B, E, and G also contain year information in a BCD format.

#### **3.8** Control Functions

All time code formats reserve a set of CF bits for the encoding of various control, identification, and other special-purpose functions. The control bits may be programmed in any predetermined coding system. A binary 1 bit has duration equal to 0.5 of the index count interval and a binary 0 bit has duration equal to 0.2 of the index count interval. The CF bits follow position identifiers P<sub>5</sub>, P<sub>6</sub>, or P<sub>7</sub> for formats A, B, E, and G beginning at index count 50, 60, or 70 with one CF bit per index count except for each tenth bit, which is a position identifier. The number of available control bits in each time code format is shown at Table 3-4.

| Table 3-4.Number of Available Control Bits in EachTime Code Format |    |  |  |  |  |
|--------------------------------------------------------------------|----|--|--|--|--|
| Format Control Function Bits                                       |    |  |  |  |  |
| А                                                                  | 18 |  |  |  |  |
| В                                                                  | 18 |  |  |  |  |
| D                                                                  | 9  |  |  |  |  |
| Е                                                                  | 18 |  |  |  |  |
| G                                                                  | 27 |  |  |  |  |
| Н                                                                  | 9  |  |  |  |  |

The CFs are presently intended for internal range use but not for inter-range applications; therefore, no standard coding system exists. The inclusion of CFs into a time code format as well as the coding system employed is an individual user-defined option.

#### 3.9 Index Markers

Index markers occur at each index count position, which is not assigned as a reference marker, position identifier, data code, or CF bit. Each index marker bit has duration equal to 0.2 of the index count interval of the respective time code format.

#### 3.10 Amplitude-Modulated Carrier

A standard sine wave carrier frequency to be amplitude-modulated by a time code is synchronized to have positive-going, zero-axis crossings coincident with the leading edges of the modulating code bits. A mark-to-space ratio of 10:3 is standard with a range of 3:1 to 6:1 (see Figure 3-1 and Table 3-5).



Figure 3-1. Typical Modulated Carrier Signal

| Table 3-5.       Typical Modulated Carrier Signal Formats for A, B, E, D, G, and H |              |              |             |            |                                |          |          |                   |
|------------------------------------------------------------------------------------|--------------|--------------|-------------|------------|--------------------------------|----------|----------|-------------------|
|                                                                                    |              | Formats      |             |            | Mark Interval Number of Cycles |          |          |                   |
| Format                                                                             | Signal No.   | Time Frame   | Carrier     | Signal Bit | Ratio                          | Code "0" | Code "1" | Position          |
|                                                                                    |              | Rate         | Frequency F | Rate ER    | F/ER                           | & Index  |          | Identifier & Ref. |
| А                                                                                  | A 130, 132,  | 10 per sec.  | 10 kHz      | 1 kpps     | 10:1                           | 2        | 5        | 8                 |
|                                                                                    | 133, 134     |              |             |            |                                |          |          |                   |
| В                                                                                  | B 120, 122,  | 1 per sec.   | 1 kHz       | 100 pps    | 10:1                           | 2        | 5        | 8                 |
|                                                                                    | 123, 127     | -            |             |            |                                |          |          |                   |
| D                                                                                  | D 111, 112,  | 1 per hr.    | 100 Hz      | 1 ppm      | 6000:1                         | 1200     | 3000     | 4800              |
|                                                                                    | 121,122      |              | 1 kHz       | 1 ppm      | 60000:1                        | 12000    | 30000    | 48000             |
| Е                                                                                  | E 111, 112,  | 6 per min    | 100 Hz      | 10 pps     | 10:1                           | 2        | 5        | 8                 |
|                                                                                    | 121,122, 125 |              | 1 kHz       | 10 pps     | 100:1                          | 20       | 50       | 80                |
| G                                                                                  | G 141, 142,  | 100 per sec. | 100 kHz     | 10 kpps    | 10:1                           | 2        | 5        | 8                 |
|                                                                                    | 126          |              |             |            |                                |          |          |                   |
| Н                                                                                  | H 111, 112,  | 1 per min.   | 100 Hz      | 1 pps      | 100:1                          | 20       | 50       | 80                |
|                                                                                    | 121,122      |              | 1 kHz       | 1 pps      | 1000:1                         | 200      | 500      | 800               |

### **CHAPTER 4**

### **Detailed Description of Formats**

#### 4.1 Serial Time Code Formats (A, B, D, E, and G)

The family of rate-scaled serial time code formats is designated A, B, D, E, G, and H. Various combinations of subwords and signal forms make up a time code word. To differentiate between these forms, signal identification numbers are assigned to each permissible combination (see Figure 4-1).

| Format:                                            |             |                                                    |
|----------------------------------------------------|-------------|----------------------------------------------------|
|                                                    | Format A    | A 1 k pps                                          |
|                                                    | Format I    | B 100 pps                                          |
|                                                    | Format I    | D 1 ppm                                            |
|                                                    | Format I    | E 10 pps                                           |
|                                                    | Format (    | G 10 k pps                                         |
|                                                    | Format I    | H 1 pps                                            |
| Modulation Type:                                   |             |                                                    |
|                                                    | 0           | Pulse width code                                   |
|                                                    | 1           | Sine wave, amplitude modulated                     |
|                                                    | 2           | Manchester modulated                               |
| Frequency/Resolution:                              |             |                                                    |
|                                                    | 0           | No carrier/index count interval                    |
|                                                    | 1           | 100 Hz/10 ms                                       |
|                                                    | 2           | 1 kHz/1 ms                                         |
|                                                    | 3           | 10 kHz/0.1 ms                                      |
|                                                    | 4           | 100 kHz/10 μs                                      |
|                                                    | 5           | 1 MHz/1µs                                          |
| Coded Expressions:                                 |             |                                                    |
|                                                    | 0           | BCD <sub>TOY</sub> , CF, SBS                       |
|                                                    | 1           | BCD <sub>TOY</sub> , CF                            |
|                                                    | 2           | BCD <sub>TOY</sub>                                 |
|                                                    | 3           | BCD <sub>TOY</sub> , SBS                           |
|                                                    | 4           | BCD <sub>TOY</sub> , BCD <sub>YEAR</sub> , CF, SBS |
|                                                    | 5           | BCD <sub>TOY</sub> , BCD <sub>YEAR</sub> , CF      |
|                                                    | 6           | BCD <sub>TOY</sub> , BCD <sub>YEAR</sub>           |
|                                                    | 7           | BCD <sub>TOY</sub> , BCD <sub>YEAR</sub> , SBS     |
|                                                    |             |                                                    |
|                                                    |             |                                                    |
| A 1 3 7                                            |             |                                                    |
| The signal designated as A137 is designared as fal | lowe: Form  | at A Sine wave (amplitude modulated)               |
| 10 kHz carrier/0.1 ms resolution, and Coded expre  | essions BCE | D <sub>TOY</sub> , BCD <sub>YEAR</sub> , and SBS.  |
|                                                    | T' (        | 1 TP (                                             |



The information in <u>Table 4-1</u> shows the permissible code formats. Codes D and H remain unchanged. Codes A, B, E, and G have changed to permit year information as indicated below. No other combinations are standard.

| Table 4-1.       Permissible Code Formats (A, B, D, E, G, H) |                                                           |               |                        |  |  |  |  |  |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------|---------------|------------------------|--|--|--|--|--|--|--|
| Format                                                       | Modulation Type   Frequency/Resolution   Coded Expression |               |                        |  |  |  |  |  |  |  |
| А                                                            | 0, 1, 2                                                   | 0, 3, 4, 5    | 0, 1, 2, 3, 4, 5, 6, 7 |  |  |  |  |  |  |  |
| В                                                            | 0, 1, 2                                                   | 0, 2, 3, 4, 5 | 0, 1, 2, 3, 4, 5, 6, 7 |  |  |  |  |  |  |  |
| D                                                            | 0, 1                                                      | 0, 1, 2       | 1, 2                   |  |  |  |  |  |  |  |
| E                                                            | 0, 1                                                      | 0, 1, 2       | 1, 2, 5, 6             |  |  |  |  |  |  |  |
| G                                                            | 0, 1, 2                                                   | 0, 4, 5       | 1, 2, 5, 6             |  |  |  |  |  |  |  |
| Н                                                            | 0, 1                                                      | 0, 1, 2       | 1, 2                   |  |  |  |  |  |  |  |

The Telecommunications and Timing Group of the Range Commanders Council has adopted a Modified Manchester modulation technique as an option for the IRIG serial time codes A, B, and G as an addition to the standard AM and level shift modulation now permitted. Also, year information has been added to codes A, B, E, and G. Codes D and H remain unchanged. It should be noted that at present, the assignment of control bits (CFs) to specific functions in the IRIG serial time codes is left to the end user of the time codes.

#### 4.2 Examples of Typical Modulated Carrier Signal Formats for IRIG A, B, E, and G

Examples are provided on the following pages as follows:

| IRIG A: | <u>Table 4-2</u> |
|---------|------------------|
| IRIG B: | <u>Table 4-3</u> |
| IRIG E: | <u>Table 4-4</u> |
| IRIG G: | <u>Table 4-5</u> |

| Table 4-2                                    | Table 4-2.         Typical Modulated Carrier Signal Formats (IRIG A) |  |  |  |  |  |  |  |  |
|----------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Modified Manchester Modulations <sup>1</sup> |                                                                      |  |  |  |  |  |  |  |  |
|                                              | 2 = Manchester modulation                                            |  |  |  |  |  |  |  |  |
| A 237                                        | 3 = 10  kHz/0.1  ms                                                  |  |  |  |  |  |  |  |  |
|                                              | $7 = BCD_{TOY}, BCD_{YEAR}, SBS$                                     |  |  |  |  |  |  |  |  |
|                                              | Standard AM modulations (Example Formats)                            |  |  |  |  |  |  |  |  |
| A 130                                        | 1 = Sine wave, amplitude modulated                                   |  |  |  |  |  |  |  |  |
|                                              | 3 = 10  kHz/0.1  ms                                                  |  |  |  |  |  |  |  |  |
|                                              | $0 = BCD_{TOY}, CF, SBS$                                             |  |  |  |  |  |  |  |  |
| A 134                                        | 1 = Sine wave, amplitude modulated                                   |  |  |  |  |  |  |  |  |
|                                              | $3 = 10 \text{ kHz}/0.1 \text{ ms}^{-1}$                             |  |  |  |  |  |  |  |  |
|                                              | $4 = BCD_{TOY}, BCD_{YEAR}, CF, SBS$                                 |  |  |  |  |  |  |  |  |
| A 132                                        | 1 = Sine wave, amplitude modulated                                   |  |  |  |  |  |  |  |  |
|                                              | 3 = 10  kHz/0.1  ms                                                  |  |  |  |  |  |  |  |  |
|                                              | $2 = BCD_{TOY}$                                                      |  |  |  |  |  |  |  |  |
| A 136                                        | 1 = Sine wave, amplitude modulated                                   |  |  |  |  |  |  |  |  |
|                                              | 3 = 10  kHz/0.1  ms                                                  |  |  |  |  |  |  |  |  |
|                                              | $6 = BCD_{TOY}, BCD_{YEAR}$                                          |  |  |  |  |  |  |  |  |

| Table 4-2               | 2. Typical Modulated Carrier Signal Formats (IRIG A)                                   |  |  |  |  |  |  |  |  |  |
|-------------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| A 133                   | 1 = Sine wave, amplitude modulated                                                     |  |  |  |  |  |  |  |  |  |
|                         | 3 = 10  kHz/0.1  ms                                                                    |  |  |  |  |  |  |  |  |  |
|                         | $3 = BCD_{TOY}, SBS$                                                                   |  |  |  |  |  |  |  |  |  |
| A 137                   | 1 = Sine wave, amplitude modulated                                                     |  |  |  |  |  |  |  |  |  |
|                         | 3 = 10  kHz/0.1 ms                                                                     |  |  |  |  |  |  |  |  |  |
|                         | $7 = BCD_{TOY}, BCD_{YEAR}, SBS$                                                       |  |  |  |  |  |  |  |  |  |
| A 131                   | 1 = Sine wave, amplitude modulated                                                     |  |  |  |  |  |  |  |  |  |
|                         | $3 = 10 \text{ kHz}/0.1 \text{ ms}^{-1}$                                               |  |  |  |  |  |  |  |  |  |
|                         | $1 = BCD_{TOY}, CF$                                                                    |  |  |  |  |  |  |  |  |  |
| A 135                   | 1 = Sine wave, amplitude modulated                                                     |  |  |  |  |  |  |  |  |  |
|                         | 3 = 10  kHz/0.1  ms                                                                    |  |  |  |  |  |  |  |  |  |
|                         | $5 = BCD_{TOY}, BCD_{YEAR}, CF$                                                        |  |  |  |  |  |  |  |  |  |
| <sup>1</sup> Modified M | <sup>1</sup> Modified Manchester modulation is an option for IRIG A in addition to the |  |  |  |  |  |  |  |  |  |
| standard AN             | I modulation in the formats in this table                                              |  |  |  |  |  |  |  |  |  |

| Table 4-3.       Typical Modulated Carrier Signal Formats (IRIG B) |                                      |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|
| Modified Manchester Modulations <sup>1</sup>                       |                                      |  |  |  |  |  |  |  |  |
| B 237                                                              | 2 = Manchester modulation            |  |  |  |  |  |  |  |  |
|                                                                    | 3 = 10  kHz/0.1  ms                  |  |  |  |  |  |  |  |  |
|                                                                    | $7 = BCD_{TOY}, BCD_{YEAR}, SBS$     |  |  |  |  |  |  |  |  |
| Standard AN                                                        | I modulations (Example Formats)      |  |  |  |  |  |  |  |  |
| B 120                                                              | 1 = Sine wave, amplitude modulated   |  |  |  |  |  |  |  |  |
|                                                                    | 2 = 1  kHz/1 ms                      |  |  |  |  |  |  |  |  |
|                                                                    | $0 = BCD_{TOY}, CF, SBS$             |  |  |  |  |  |  |  |  |
| B 124                                                              | 1 = Sine wave, amplitude modulated   |  |  |  |  |  |  |  |  |
|                                                                    | 2 = 1  kHz/1 ms                      |  |  |  |  |  |  |  |  |
|                                                                    | $4 = BCD_{TOY}, BCD_{YEAR}, CF, SBS$ |  |  |  |  |  |  |  |  |
| B 121                                                              | 1 = Sine wave, amplitude modulated   |  |  |  |  |  |  |  |  |
|                                                                    | 2 = 1  kHz/1 ms                      |  |  |  |  |  |  |  |  |
|                                                                    | $1 = BCD_{TOY}, CF$                  |  |  |  |  |  |  |  |  |
| B 125                                                              | 1 = Sine wave, amplitude modulated   |  |  |  |  |  |  |  |  |
|                                                                    | 2 = 1  kHz/1 ms                      |  |  |  |  |  |  |  |  |
|                                                                    | $5 = BCD_{TOY}, BCD_{YEAR}, CF$      |  |  |  |  |  |  |  |  |
| B 122                                                              | 1 = Sine wave, amplitude modulated   |  |  |  |  |  |  |  |  |
|                                                                    | 2 = 1  kHz/1 ms                      |  |  |  |  |  |  |  |  |
|                                                                    | $2 = BCD_{TOY}$                      |  |  |  |  |  |  |  |  |
| B 126                                                              | 1 = Sine wave, amplitude modulated   |  |  |  |  |  |  |  |  |
|                                                                    | 2 = 1  kHz/1 ms                      |  |  |  |  |  |  |  |  |
|                                                                    | $6 = BCD_{TOY}, BCD_{YEAR}$          |  |  |  |  |  |  |  |  |
| B 123                                                              | 1 = Sine wave, amplitude modulated   |  |  |  |  |  |  |  |  |
|                                                                    | 2 = 1  kHz/1 ms                      |  |  |  |  |  |  |  |  |
|                                                                    | $3 = BCD_{TOY} SBS$                  |  |  |  |  |  |  |  |  |

# Table 4-3. Typical Modulated Carrier Signal Formats (IRIG B)

B 127 1 = Sine wave, amplitude modulated

2 = 1 kHz/1 ms

 $7 = BCD_{TOY}, BCD_{YEAR}, SBS$ 

<sup>1</sup>Modified Manchester modulation is an option for IRIG B in addition to the standard AM modulation in the formats in this table.

| Table 4-4.         Typical Modulated Carrier Signal Formats (IRIG E) |                                    |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------|------------------------------------|--|--|--|--|--|--|--|--|
| Standard AM modulations (Example Formats)                            |                                    |  |  |  |  |  |  |  |  |
| E 111                                                                | 1 = Sine wave, amplitude modulated |  |  |  |  |  |  |  |  |
|                                                                      | 1 = 100  Hz/10  ms                 |  |  |  |  |  |  |  |  |
|                                                                      | $1 = BCD_{TOY}, CF$                |  |  |  |  |  |  |  |  |
| E 115                                                                | 1 = Sine wave, amplitude modulated |  |  |  |  |  |  |  |  |
|                                                                      | 1 = 100  Hz/10  ms                 |  |  |  |  |  |  |  |  |
|                                                                      | $5 = BCD_{TOY}, BCD_{YEAR}, CF$    |  |  |  |  |  |  |  |  |
| E 112                                                                | 1 = Sine wave, amplitude modulated |  |  |  |  |  |  |  |  |
|                                                                      | 1 = 100  Hz/10  ms                 |  |  |  |  |  |  |  |  |
|                                                                      | $2 = BCD_{TOY},$                   |  |  |  |  |  |  |  |  |
| E 116                                                                | 1 = Sine wave, amplitude modulated |  |  |  |  |  |  |  |  |
|                                                                      | 1 = 100  Hz/10  ms                 |  |  |  |  |  |  |  |  |
|                                                                      | $6 = BCD_{TOY}, BCD_{YEAR}$        |  |  |  |  |  |  |  |  |
| E 121                                                                | 1 = Sine wave, amplitude modulated |  |  |  |  |  |  |  |  |
|                                                                      | 2 = 1  kHz/1 ms                    |  |  |  |  |  |  |  |  |
|                                                                      | $1 = BCD_{TOY}, CF$                |  |  |  |  |  |  |  |  |
| E 125                                                                | 1 = Sine wave, amplitude modulated |  |  |  |  |  |  |  |  |
|                                                                      | 2 = 1  kHz/1 ms                    |  |  |  |  |  |  |  |  |
|                                                                      | $5 = BCD_{TOY}, BCD_{YEAR}, CF$    |  |  |  |  |  |  |  |  |
| E 122                                                                | 1 = Sine wave, amplitude modulated |  |  |  |  |  |  |  |  |
|                                                                      | 2 = 1  kHz/1 ms                    |  |  |  |  |  |  |  |  |
|                                                                      | $2 = BCD_{TOY}$                    |  |  |  |  |  |  |  |  |
| E 126                                                                | 1 = Sine wave, amplitude modulated |  |  |  |  |  |  |  |  |
|                                                                      | 2 = 1  kHz/1ms                     |  |  |  |  |  |  |  |  |
|                                                                      | $6 = BCD_{TOY}, BCD_{YEAR}$        |  |  |  |  |  |  |  |  |

| Table 4- | 5. Typical Modulated Carrier Signal Formats (IRIG G) |  |  |  |  |  |  |  |  |
|----------|------------------------------------------------------|--|--|--|--|--|--|--|--|
|          | Modified Manchester Modulations <sup>1</sup>         |  |  |  |  |  |  |  |  |
| G 245    | 2 = Manchester modulation                            |  |  |  |  |  |  |  |  |
|          | $4 = 100 \text{ kHz}/10 \mu\text{s}$                 |  |  |  |  |  |  |  |  |
|          | $5 = BCD_{TOY}, BCD_{YEAR}, CF$                      |  |  |  |  |  |  |  |  |
|          | Standard AM modulations (Example Formats)            |  |  |  |  |  |  |  |  |
| G 141    | 1 = Sign wave, amplitude modulation                  |  |  |  |  |  |  |  |  |
|          | $4 = 100 \text{ kHz}/10 \mu\text{s}$                 |  |  |  |  |  |  |  |  |
|          | $1 = BCD_{TOY}, CF$                                  |  |  |  |  |  |  |  |  |

| Table 4-                | 5. Typical Modulated Carrier Signal Formats (IRIG G)                                   |  |  |  |  |  |  |
|-------------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| G 145                   | 1 = Sign wave, amplitude modulation                                                    |  |  |  |  |  |  |
|                         | $4 = 100 \text{ kHz}/10 \mu\text{s}$                                                   |  |  |  |  |  |  |
|                         | $5 = BCD_{TOY}, BCD_{YEAR}, CF$                                                        |  |  |  |  |  |  |
| G 142                   | 1 = Sign wave, amplitude modulated                                                     |  |  |  |  |  |  |
|                         | $4 = 100 \text{ kHz}/10 \mu\text{s}$                                                   |  |  |  |  |  |  |
|                         | $2 = BCD_{TOY}$                                                                        |  |  |  |  |  |  |
| G 146                   | 1 = Sign wave, amplitude modulated                                                     |  |  |  |  |  |  |
|                         | $4 = 100 \text{ kHz}/10 \mu\text{s}$                                                   |  |  |  |  |  |  |
|                         | $6 = BCD_{TOY}, BCD_{YEAR}$                                                            |  |  |  |  |  |  |
| <sup>1</sup> Modified M | <sup>1</sup> Modified Manchester modulation is an option for IRIG G in addition to the |  |  |  |  |  |  |
| standard AN             | A modulation in the formats in this table.                                             |  |  |  |  |  |  |

#### 4.3 Manchester II Coding

Standard Manchester modulation or encoding is a return-to-zero type, where a rising edge in the middle of the clock window indicates a binary 1 and a falling edge indicates a binary 0. This modification to the Manchester code shifts the data window so the data are at the edge of the clock window that is on time with the one-pps clock synchronized to UTC. Thus, the data edge is the on-time mark in the code. Manchester coding is used because it is easy to generate digitally, easily modulated for use over fiber or coaxial cable, simple to decode, has a zero mean, and is easily detected even at low voltage levels.

The basic Modified Manchester modulation, compared with the AM and level shift modulations, are shown at <u>Figure 4-2</u> and <u>Figure 4-3</u>. The Manchester encoding uses a square-wave as the encoding (data) clock, with the rising edge on time with UTC. The frequency of the encoding clock shall be ten times the index rate of the time code generated. As an example, the clock rate for IRIG B 230 shall be 10 kHz.



Figure 4-2. IRIG B Coding Comparisons: Level Shift, 1 kHz am, and Modified Manchester



Figure 4-3. Modified Manchester Coding

The Modified Manchester coding technique has several advantages as noted below.

- No dc component.
- Can be alternating current coupled.
- Better signal-to-noise ratio.
- Good spectral power density.
- Easily decoded.
- Better timing resolution.
- The link integrity monitoring capability is intrinsic to bipolar pulse modulation.
- The coding technique is designed to operate over fiber-optic or coaxial lines for short distances.

#### 4.4 Manchester II Decoding

An example of a Manchester II encoded sequence is shown at <u>Figure 4-4</u>, where each symbol is "sub-bit" encoded, i.e., a data one equals a zero-one, and a data zero equals a one-zero.



Figure 4-4. A Manchester II Encoded Sequence

The encoded sequence at <u>Figure 4-4</u> is formed by modulo-2 adding the non-return-to-zero level (NRZ-L) sequence with the clock. The truth table shown in <u>Table 4-6</u> is for a modulo-2 adder, which is equivalent to an Exclusive-OR.

| Table 4-6.Tr | Truth Table Is A Modulo-2 Adder |        |  |  |  |  |  |  |  |  |
|--------------|---------------------------------|--------|--|--|--|--|--|--|--|--|
| Input A      | Input B                         | Output |  |  |  |  |  |  |  |  |
| 0            | 0                               | 0      |  |  |  |  |  |  |  |  |
| 0            | 1                               | 1      |  |  |  |  |  |  |  |  |
| 1            | 0                               | 1      |  |  |  |  |  |  |  |  |
| 1            | 1                               | 0      |  |  |  |  |  |  |  |  |

To decode the encoded sequence of <u>Figure 4-4</u>, it is only necessary to modulo-2 add the clock with the encoded sequence and the original NRZ-L sequence results. It should be noted that the determination is made after integrating across a bit period. In this way, the maximum amount of energy is used in the determination of each bit. Likewise, an engineer could have integrated or sampled both halves of the encoded sequence and reconstructed the original NRZ-L sequence by applying the encoding rule. This means that if sampled halves are 0-1, then a data 1 is reconstructed, and if the sampled halves are 1-0, then a data 0 is reconstructed. Once again, as much energy as possible is used from the encoded sequence to reconstruct the original NRZ-L sequence. This procedure minimizes the probability of error.

| NOTE 🧥                | When the above procedure is used, the reconstructed data are coherent with          |  |  |  |  |  |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| and the second second | //// the clock; that is, the NRZ-L data transitions will agree with the positive gc |  |  |  |  |  |  |  |  |  |
| of                    | edge of the clock; however, since the decisions are made at the end of the          |  |  |  |  |  |  |  |  |  |
|                       | symbol period, the reconstructed NRZ-L data are delayed one clock period.           |  |  |  |  |  |  |  |  |  |
|                       | This means that when the entire time is received, the received time code or         |  |  |  |  |  |  |  |  |  |
|                       | local clock needs to be advanced by one clock period. Also, if desired, one         |  |  |  |  |  |  |  |  |  |
|                       | can correct the receive clock for significant signal propagation delays.            |  |  |  |  |  |  |  |  |  |

## CHAPTER 5

## **Detailed Description of Time Codes**

#### 5.1 Introduction

Detailed descriptions of individual time code formats are shown in the following paragraphs.

#### 5.2 Format A

The following is a detailed description of IRIG time code format A.

- The beginning of each 0.1-second time frame is identified by two consecutive 0.8-ms bits, P<sub>0</sub> and P<sub>r</sub>. The leading edge of P<sub>r</sub> is the on-time reference point for the succeeding time code words. Position identifiers, P<sub>0</sub> and P<sub>1</sub> through P<sub>9</sub>, (0.8 ms duration), each use 1 ms of the time frame (which is one full index count duration), and occur every tenth bit and 1 ms before the leading edge of each succeeding 100-pps on-time bit (see Figure 5-1).
- The three time code words and the CFs presented during the time frame are pulse-width coded. The time code bit rate is 1 kpps. The time code reference bit's leading edge is the on-time reference point for all bits and is the index count reference point. The binary 0 and index markers have duration of 0.2 ms and the binary 1 has duration of 0.5 ms.
- The BCD TOY coded word consists of 34 bits beginning at index count 1. The TOY subword bits occur between position identifiers P<sub>0</sub> and P<sub>5</sub>: 7 bits for seconds, 7 for minutes, 6 for hours, 10 for days, and 4 for tenths of seconds. Year information, coded in 8 bits, occur between position identifiers P<sub>5</sub> and P<sub>6</sub> to complete the BCD time code word. An index marker occurs between the decimal digits in each subword, except tenths of seconds, to provide separation for visual resolution. The LSB occurs first except for the fractional seconds subword that follows the day-of-year subword. The BCD TOY code recycles yearly.
- There are 18 CFs occur between position identifiers P<sub>6</sub> and P<sub>8</sub>. Any CF bit or combination of bits can be programmed to read a binary 1 or a binary 0 during any specified number of frames. Each control bit position is identified in <u>Table 5-1</u>.
- The SBS TOD code word occurs at index count 80 between position identifiers P<sub>8</sub> and P<sub>0</sub>. The time of day in seconds is given in 17 bits with the LSB occurring first. A position identifier P<sub>9</sub> occurs between the ninth and tenth binary seconds. The code recycles each 24-hour period.
- Control bit assignments, functions, and parameters for time code format A are shown on the following pages.

<u>Table 5-2</u>: Identifies the control bit assignments for year information. <u>Table 5-3</u>: Identifies the parameters that characterize the time code for Format A.



Figure 5-1. Format A: BCD Time-of-Year in Days, Hours, Minutes, Seconds, Fractions of Seconds, Year, Straight Binary Seconds Time-of-Day, and Control Bits

| Table 5-1.   Format A, Signal A000                                 |                                                                                                                  |             |                            |                       |                                                  |                                                      |               |               |                                     |                          |                |                         |                                   |               |                       |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------|----------------------------|-----------------------|--------------------------------------------------|------------------------------------------------------|---------------|---------------|-------------------------------------|--------------------------|----------------|-------------------------|-----------------------------------|---------------|-----------------------|
| BCD Time-of-Year Code (34 Digits)                                  |                                                                                                                  |             |                            |                       |                                                  |                                                      |               |               |                                     |                          |                |                         |                                   |               |                       |
| S                                                                  | econds Sub                                                                                                       | vord        | ]                          | Minutes Subw          | ord                                              | Hours Subword                                        |               |               | Days And Fractional Second Subwords |                          |                |                         |                                   |               |                       |
| BCD                                                                | Subword                                                                                                          | Bit Tim     | e <sup>1</sup> BCD         | Subword               | Bit Time                                         | BCD Code                                             | Subword       | Bit Time      | BCD Code                            | Subword                  | Bit Tim        | e BCD C                 | Code Sub                          | word          | Bit Time              |
| Code                                                               | Digit Wt                                                                                                         |             | Code                       | Digit Wt              |                                                  | Digit No.                                            | Digit Wt      |               | Digit No.                           | Digit Wt                 |                | Digit                   | Digit No. Digit Wi                |               |                       |
| Digit No.                                                          | Seconds                                                                                                          |             | Digit No.                  | Minutes               |                                                  | Hours                                                |               |               |                                     | Days                     |                |                         | Days                              |               |                       |
| Refere                                                             | ence Bit                                                                                                         | Pr          | 8                          | 1                     | $P_r + 10 ms$                                    | 15                                                   | 1             | $P_r + 20 ms$ | 21                                  | 1                        | $P_r + 30 n$   | ıs 29                   | 1                                 | 00            | $P_r + 40 \text{ ms}$ |
| 1                                                                  | 1                                                                                                                | $P_r + 1 n$ | ns 9                       | 2                     | $P_r + 11 ms$                                    | 16                                                   | 2             | $P_r + 21 ms$ | 22                                  | 2                        | $P_r + 31 n$   | 1s 30                   | 2                                 | 00            | $P_r + 41 ms$         |
| 2                                                                  | 2                                                                                                                | $P_r + 2 n$ | ns 10                      | 4                     | $P_r + 12 ms$                                    | 17                                                   | 4             | $P_r + 22 ms$ | 23                                  | 4                        | $P_r + 32 n$   | 18                      | Index Bit                         |               | $P_r + 42 ms$         |
| 3                                                                  | 4                                                                                                                | $P_r + 3 n$ | ns 11                      | 8                     | $P_r + 13 ms$                                    | 18                                                   | 8             | $P_r + 23 ms$ | 24                                  | 8                        | $P_r + 33 n$   | 15                      | Index Bit                         |               | $P_r + 43 ms$         |
| 4                                                                  | 8                                                                                                                | $P_r + 4 n$ | ns Inc                     | lex Bit               | $P_r + 14 ms$                                    | Index                                                | Bit           | $P_r + 24 ms$ | Inde                                | x Bit                    | $P_r + 34 n$   | 18                      | Index Bit                         |               | $P_r + 44 ms$         |
| Inde                                                               | ex Bit                                                                                                           | $P_r + 5 n$ | ns 12                      | 10                    | $P_r + 15 ms$                                    | 19                                                   | 10            | $P_r + 25 ms$ | 25                                  | 10                       | $P_r + 35 n$   | ıs 31                   | 0                                 | .1            | $P_r + 45 ms$         |
| 5                                                                  | 10                                                                                                               | $P_r + 6 n$ | ns 13                      | 20                    | $P_r + 16 ms$                                    | 20                                                   | 20            | $P_r + 26 ms$ | 26                                  | 20                       | $P_r + 36 n$   | ıs 32                   | . 0                               | .2            | $P_r + 46 ms$         |
| 6                                                                  | 20                                                                                                               | $P_r + 7 n$ | ns 14                      | 40                    | $P_r + 17 ms$                                    | Index Bit $P_r + 27$                                 |               | $P_r + 27 ms$ | 27                                  | 40                       | $P_r + 37 n$   | ıs 33                   | 0                                 | .4            | $P_r + 47 ms$         |
| 7                                                                  | 40                                                                                                               | $P_r + 8 n$ | ns Inc                     | lex Bit               | $P_r + 18 ms$                                    | Index                                                | Bit           | $P_r + 28 ms$ | 28                                  | 80 $P_r + 38 \text{ ms}$ |                | ıs 34                   | 34 0.8                            |               | $P_r + 48 ms$         |
| Position Ident. (P <sub>1</sub> ) $P_r + 9 \text{ m}$              |                                                                                                                  | ns Position | n Ident. (P <sub>2</sub> ) | $P_r + 19 ms$         | Position Ident. (P <sub>3</sub> )                |                                                      | $P_r + 29 ms$ | Position I    | dent. (P <sub>4</sub> )             | $P_r + 39 n$             | is Pos         | Position Ident. $(P_5)$ |                                   | $P_r + 49 ms$ |                       |
|                                                                    |                                                                                                                  |             |                            |                       |                                                  |                                                      |               |               |                                     |                          |                |                         |                                   |               |                       |
|                                                                    |                                                                                                                  | Year        | and Control Fu             | nctions (27 Bi        | its)                                             | Straight Binary Seconds Time-of-Day Code (17 Digits) |               |               |                                     |                          |                |                         |                                   |               |                       |
| Control                                                            | Bi                                                                                                               | Time        | Control                    | Bit Time              | Control Bit Time                                 |                                                      | ne            | SB Cod        | e Subword                           | Digit Bit                | git Bit Time S |                         | Lode Subword                      |               | Bit Time              |
| Function B                                                         | it                                                                                                               |             | Function Bit               |                       | Function Bit                                     |                                                      |               | Bit           | Weigh                               | nt                       |                |                         | Bit Digit Weight                  |               |                       |
| 1                                                                  | $P_{r} + 50$                                                                                                     | ms Units    | 1                          | $P_r + 60 ms$         | 10                                               | $P_{r} + 70$                                         | ms            | 1             | $2^{0} =$                           | (1) $P_r +$              | 80 ms          | 10                      | $2^9 = (512)$                     | .)            | $P_r + 90 ms$         |
|                                                                    | of                                                                                                               | ear 01      |                            |                       |                                                  |                                                      |               |               |                                     |                          |                |                         | - 10                              |               |                       |
| 2                                                                  | Units                                                                                                            | of Year 02  | 2                          | $P_r + 61 \text{ ms}$ | 11                                               | $P_r + 71$                                           | ms            | 2             | $2^{1} =$                           | (2) $P_r +$              | 81 ms          | 11                      | $2^{10} = (1024)$                 | .)            | $P_r + 91 ms$         |
| 3                                                                  | Units                                                                                                            | of Year 04  | 3                          | $P_r + 62 ms$         | 12                                               | $P_r + 72$                                           | ms            | 3             | $2^2 =$                             | (4) $P_r +$              | 82 ms          | 12                      | $2^{11} = (2048)$                 | 5)            | $P_r + 92 ms$         |
| 4                                                                  | Units                                                                                                            | of Year 08  | 4                          | $P_r + 63 ms$         | 13                                               | $P_r + 73$                                           | ms            | 4             | $2^{3} =$                           | (8) $P_r +$              | 83 ms          | 13                      | $2^{12} = (4096)$                 | j)            | $P_r + 93 ms$         |
| Index Mar                                                          | $k P_r$                                                                                                          | 54 ms       | 5                          | $P_r + 64 ms$         | 14                                               | $P_r + 74$                                           | ms            | 5             | $2^4 = (1)^{-1}$                    | 16) P <sub>r</sub> +     | 84 ms          | 14                      | $2^{13} = (8192)$                 | .)            | $P_r + 94 ms$         |
| 5                                                                  | Tens                                                                                                             | of Year 10  | 6                          | $P_r + 65 ms$         | 15                                               | $P_r + 75$                                           | ms            | 6             | $2^{5} = (3$                        | 32) $P_r +$              | 85 ms          | 15                      | $2^{14} = (16384)$                | .)            | $P_r + 95 ms$         |
| 6                                                                  | Tens                                                                                                             | of Year 20  | 7                          | $P_r + 66 ms$         | 16                                               | $P_r + 76$                                           | ms            | 7             | $2^6 = (6)$                         | 64) P <sub>r</sub> +     | 86 ms          | 16                      | 215=(32768                        | 3)            | $P_r + 96 ms$         |
| 7                                                                  | Tens                                                                                                             | of Year 40  | 8                          | $P_r + 67 ms$         | 17                                               | $P_r + 77$                                           | ms            | 8             | 2' = (12)                           | 28) $P_r +$              | 87 ms          | 17                      | 216=(65536                        | j)            | $P_r + 97 ms$         |
| 8 Tens of Year 80 9 $P_r + 68 \text{ ms}$ 18 $P_r + 68 \text{ ms}$ |                                                                                                                  | $P_r + 78$  | ms                         | 9                     | 9 $2^8 = (256)$ P <sub>r</sub> + 88 ms Index Bit |                                                      | ex Bit        |               | $P_r + 98 ms$                       |                          |                |                         |                                   |               |                       |
| Position                                                           | Pr+                                                                                                              | 59 ms       | Position                   | $P_r + 69 ms$         | Position Ident                                   | $P_r + 79$                                           | ms            | Posi          | Position Ident. (P <sub>9</sub> )   |                          | $P_r + 89 ms$  |                         | Position Ident. (P <sub>0</sub> ) |               | $P_r + 99 ms$         |
| Ident. (P <sub>6</sub> )                                           | Ident. (P <sub>6</sub> )         Ident. (P <sub>7</sub> )         (P <sub>8</sub> )                              |             |                            |                       |                                                  |                                                      |               |               |                                     |                          |                |                         |                                   |               |                       |
| <sup>1</sup> The bit t                                             | <sup>1</sup> The bit time is the time of the bit leading edge and refers to the leading edge of P <sub>r</sub> . |             |                            |                       |                                                  |                                                      |               |               |                                     |                          |                |                         |                                   |               |                       |

| Tab                                                                                                   | Table 5-2.         IRIG-A Control Bit Assignment for Year Information |                       |                             |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------|-----------------------------|--|--|--|--|--|
| Pos. Id                                                                                               | Ctrl Bit No                                                           | Designation           | Explanation                 |  |  |  |  |  |
| P <sub>0</sub> to P <sub>5</sub> is BCD TOY in seconds, minutes, hours, days, and fractional seconds. |                                                                       |                       |                             |  |  |  |  |  |
| P49                                                                                                   |                                                                       | P5                    | Position Identifier #5      |  |  |  |  |  |
| P50                                                                                                   | Year 1                                                                | Year, BCD 1           | LSB 2 digits of year in BCD |  |  |  |  |  |
| P <sub>51</sub>                                                                                       | Year 2                                                                | Year, BCD 2           | IBID                        |  |  |  |  |  |
| P <sub>52</sub>                                                                                       | Year 3                                                                | Year, BCD 4           | IBID                        |  |  |  |  |  |
| P <sub>53</sub>                                                                                       | Year 4                                                                | Year, BCD 8           | IBID                        |  |  |  |  |  |
| P <sub>54</sub>                                                                                       |                                                                       | Not Used              | Index Marker                |  |  |  |  |  |
| P55                                                                                                   | Year 6                                                                | Year, BCD 10          | MSB 2 digits of year in BCD |  |  |  |  |  |
| P56                                                                                                   | Year 7                                                                | Year, BCD 20          | IBID                        |  |  |  |  |  |
| P57                                                                                                   | Year 8                                                                | Year, BCD 40          | IBID                        |  |  |  |  |  |
| P58                                                                                                   | Year 9                                                                | Year, BCD 80          | IBID                        |  |  |  |  |  |
| P59                                                                                                   |                                                                       | P <sub>6</sub>        | Position Identifier #6      |  |  |  |  |  |
| P <sub>60</sub>                                                                                       | 1                                                                     | Not Used              | Control Bit                 |  |  |  |  |  |
| P <sub>61</sub>                                                                                       | 2                                                                     | IBID                  | IBID                        |  |  |  |  |  |
| P <sub>62</sub>                                                                                       | 3                                                                     | IBID                  | IBID                        |  |  |  |  |  |
| P <sub>63</sub>                                                                                       | 4                                                                     | IBID                  | IBID                        |  |  |  |  |  |
| P <sub>64</sub>                                                                                       | 5                                                                     | IBID                  | IBID                        |  |  |  |  |  |
| P <sub>65</sub>                                                                                       | 6                                                                     | IBID                  | IBID                        |  |  |  |  |  |
| P <sub>66</sub>                                                                                       | 7                                                                     | IBID                  | IBID                        |  |  |  |  |  |
| P <sub>67</sub>                                                                                       | 8                                                                     | IBID                  | IBID                        |  |  |  |  |  |
| P <sub>68</sub>                                                                                       | 9                                                                     | IBID                  | IBID                        |  |  |  |  |  |
| P <sub>69</sub>                                                                                       |                                                                       | <b>P</b> <sub>7</sub> | Position Identifier #7      |  |  |  |  |  |
| P <sub>70</sub>                                                                                       | 10                                                                    | Not Used              | Control Bit                 |  |  |  |  |  |
| P <sub>71</sub>                                                                                       | 11                                                                    | IBID                  | IBID                        |  |  |  |  |  |
| P <sub>72</sub>                                                                                       | 12                                                                    | IBID                  | IBID                        |  |  |  |  |  |
| P <sub>73</sub>                                                                                       | 13                                                                    | IBID                  | IBID                        |  |  |  |  |  |
| P <sub>74</sub>                                                                                       | 14                                                                    | IBID                  | IBID                        |  |  |  |  |  |
| P <sub>75</sub>                                                                                       | 15                                                                    | IBID                  | IBID                        |  |  |  |  |  |
| P <sub>76</sub>                                                                                       | 16                                                                    | IBID                  | IBID                        |  |  |  |  |  |
| P <sub>77</sub>                                                                                       | 17                                                                    | IBID                  | IBID                        |  |  |  |  |  |
| P <sub>78</sub>                                                                                       | 18                                                                    | IBID                  | IBID                        |  |  |  |  |  |
| P79                                                                                                   |                                                                       | P <sub>8</sub>        | Position Identifier #8      |  |  |  |  |  |
| $P_6$ to $P_8$ at                                                                                     | re control functi                                                     | ons                   |                             |  |  |  |  |  |
| $P_8$ to $P_0$ is                                                                                     | TOD in straigh                                                        | t binary seconds.     |                             |  |  |  |  |  |

| Table 5-3.Parameters for Format A |                                    |  |  |  |  |  |  |
|-----------------------------------|------------------------------------|--|--|--|--|--|--|
| Pulse Rates                       | Pulse Duration                     |  |  |  |  |  |  |
| Bit rate: 1 kpps                  | Index marker: 0.2 ms               |  |  |  |  |  |  |
| Position identifier rate: 100 pps | Binary 0 or un-encoded bit: 0.2 ms |  |  |  |  |  |  |
| Reference marker: 10 pps          | Binary 1 or coded bit: 0.5 ms      |  |  |  |  |  |  |
|                                   | Position identifiers: 0.8 ms       |  |  |  |  |  |  |
|                                   | Reference bit: 0.8 ms              |  |  |  |  |  |  |
| Resolution                        | Mark-To-Space Ratio                |  |  |  |  |  |  |
| 1 ms dc level                     | Nominal value of 10:3              |  |  |  |  |  |  |
| 0.1 ms modulated 10 kHz carrier   | Range of 3:1 to 6:1                |  |  |  |  |  |  |

#### 5.3 Format B

The following is a detailed description of IRIG time code format B.

- The beginning of each 1.0-second time frame is identified by two consecutive 8.0-ms bits, P<sub>0</sub> and P<sub>r</sub>. The leading edge of P<sub>r</sub> is the on-time reference point for the succeeding time code words. Position identifiers, P<sub>0</sub> and P<sub>1</sub> through P<sub>9</sub> each use 10 ms of the time frame, one full index count duration. Position identifiers occur every 10 ms before the leading edge of each succeeding tenth index count (see Figure 5-2).
- The three time code words and the CFs presented during the time frame are pulse-width coded. The time code bit rate is 100 pps. The time code reference bit's leading edge is the on-time reference point for all bits and is the index count reference point. The binary 0 and the index markers have duration of 2.0 ms and a binary 1 has duration of 5.0 ms.
- The BCD TOY code word consists of 30 bits beginning at index count 1. The subword bits occur between position identifiers P<sub>0</sub> and P<sub>5</sub>; there are 7 bits for seconds, 7 for minutes, 6 for hours, and 10 for days. Additionally, there are 17 SBS bits. Year information is coded in 8 bits occurring between position identifiers P<sub>5</sub> and P<sub>6</sub> to complete the BCD time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The LSB occurs first. The BCD TOY code recycles yearly. Each bit position is identified in Table 5-4.
- There are 18 CFs occurring between position identifiers P<sub>6</sub> and P<sub>8</sub>. Any CF bit or combination of bits can be programmed to read a binary 1 or 0 during any specified number of time frames.
- The SBS TOD word begins at index count 80 and occurs between position identifiers  $P_8$  and  $P_0$ . A position identifier occurs between the ninth and tenth binary coded bit. The code recycles each 24-hour period.
- Control bit assignments, functions, and parameters for time code format B are shown on the following pages.

<u>Table 5-5</u>: Identifies the control bit assignments for year information. <u>Table 5-6</u>: Identifies the parameters that characterize the time code for Format B.



Figure 5-2. Format B: BCD Time-of-Year in Days, Hours, Minutes, Seconds, Year, Straight Binary Seconds Time-of-Day, and Control Bits.

|                                                            | Table 5-4.   Format B, Signal B000 |                       |              |                         |                          |                  |                          |                        |                            |                          |                       |           |                                |                          |
|------------------------------------------------------------|------------------------------------|-----------------------|--------------|-------------------------|--------------------------|------------------|--------------------------|------------------------|----------------------------|--------------------------|-----------------------|-----------|--------------------------------|--------------------------|
| BCD Time-of-Year Code (30 Digits)                          |                                    |                       |              |                         |                          |                  |                          |                        |                            |                          |                       |           |                                |                          |
| Seconds Subword Minutes Subword Hours Subword Days Subword |                                    |                       |              |                         |                          |                  |                          |                        |                            |                          |                       |           |                                |                          |
| BCD                                                        | Subword                            | Bit Time <sup>1</sup> | BCD          | Subword                 | Bit Time                 | BCD              | Subword                  | Bit Time               | BCD                        | Subword                  | Bit Time              | BCD C     | Code Subword                   | Bit Time                 |
| Code                                                       | Digit Wt                           |                       | Code         | Digit Wt                |                          | Code             | Digit Wt                 |                        | Code                       | Digit Wt                 |                       | Digit     | No. Digit W                    |                          |
| Digit No.                                                  | Seconds                            |                       | Digit No.    | Minutes                 |                          | Digit No.        | Hours                    |                        | Digit No.                  | Days                     |                       |           | Days                           |                          |
| Refere                                                     | nce Bit                            | Pr                    | 8            | 1                       | $P_r + 100 ms$           | 15               | 1                        | $P_r + 200 ms$         | 21                         | 1                        | $P_r + 300 m$         | s 29      | 100                            | $P_r + 400 \text{ ms}$   |
| 1                                                          | 1                                  | $P_r + 10 ms$         | 9            | 2                       | $P_r + 110 ms$           | 16               | 2                        | $P_r + 210 ms$         | 22                         | 2                        | $P_r + 310 m$         | s 30      | 200                            | $P_r + 410 \text{ ms}$   |
| 2                                                          | 2                                  | $P_r + 20 \text{ ms}$ | 10           | 4                       | $P_r + 120 ms$           | 17               | 4                        | $P_r + 220 \text{ ms}$ | 23                         | 4                        | $P_r + 320 \text{ m}$ | S         | Index Bit                      | $P_r + 420 \text{ ms}$   |
| 3                                                          | 4                                  | $P_r + 30 ms$         | 11           | 8                       | $P_r + 130 \text{ ms}$   | 18               | 8                        | $P_r + 230 \text{ ms}$ | 24                         | 8                        | $P_r + 330 m$         | S         | Index Bit                      | $P_r + 430 \text{ ms}$   |
| 4                                                          | 8                                  | $P_r + 40 \text{ ms}$ | Index        | Bit                     | $P_{r} + 140 \text{ ms}$ | Inde             | x Bit                    | $P_r$ + 240 ms         | Inde                       | ex Bit                   | $P_r + 340 m$         | S         | Index Bit                      | $P_r + 440 \text{ ms}$   |
| Inde                                                       | x Bit                              | $P_r + 50 ms$         | 12           | 10                      | $P_r + 150 ms$           | 19               | 10                       | $P_r + 250 ms$         | 25                         | 10                       | $P_r + 350 m$         | S         | Index Bit                      | $P_r + 450 \text{ ms}$   |
| 5                                                          | 10                                 | $P_r + 60 ms$         | 13           | 20                      | $P_r + 160 ms$           | 20               | 20                       | $P_r + 260 \text{ ms}$ | 26                         | 20                       | $P_r + 360 m$         | S         | Index Bit                      | $P_r + 460 \text{ ms}$   |
| 6                                                          | 20                                 | $P_r + 70 ms$         | 14           | 40                      | $P_r + 170 ms$           | Inde             | x Bit                    | $P_r + 270 ms$         | 27                         | 40                       | $P_r + 370 m$         | S         | Index Bit                      | $P_r + 470 \text{ ms}$   |
| 7                                                          | 40                                 | $P_r + 80 ms$         | Index        | Bit                     | $P_r + 180 ms$           | Inde             | x Bit                    | $P_r + 280 \text{ ms}$ | 28                         | 80                       | $P_r + 380 m$         | S         | Index Bit                      | $P_r + 480 \text{ ms}$   |
| Position                                                   | Ident. (P <sub>1</sub> )           | $P_r + 90 ms$         | Position Ic  | lent. (P <sub>2</sub> ) | $P_{\rm r}$ + 190 ms     | Position         | Ident. (P <sub>3</sub> ) | $P_r + 290 ms$         | Position                   | Ident. (P <sub>4</sub> ) | $P_r + 390 m$         | s Pos     | ition Ident. (P <sub>5</sub> ) | $P_r + 490 \text{ ms}$   |
|                                                            |                                    | Year an               | d Control F  | unctions (2             | 7 Bits)                  |                  |                          |                        | Straight                   | t Binary Se              | conds Time-           | of-Day Co | de (17 Digits)                 |                          |
| Control                                                    | Bit                                | Time                  | Control      | Bit Time                | Control                  | Bi               | it Time                  | SB Code                | Subword I                  | Digit                    | Bit Time              | SB Code   | Subword                        | Bit Time                 |
| Function B                                                 | it                                 |                       | Function Bit |                         | Function I               | Bit              |                          | Bit                    | Weight                     | t                        |                       | Bit       | Digit Weight                   |                          |
| 1                                                          | $P_r + 500$<br>of Y                | ms Units<br>ear 01    | 1            | $P_{r} + 600 m$         | s 10                     | P <sub>r</sub> + | - 700 ms                 | 1                      | $2^0 = ($                  | 1) P                     | r + 800 ms            | 10        | $2^9 = (512)$                  | $P_r + 900 \text{ ms}$   |
| 2                                                          | Units of                           | f Year 02             | 2            | $P_r + 610 m$           | s 11                     | Pr+              | - 710 ms                 | 2                      | $2^1 = 0$                  | 2) P                     | r + 810 ms            | 11        | $2^{10} = (1024)$              | $P_{r} + 910 \text{ ms}$ |
| 3                                                          | Units of                           | f Year 04             | 3            | $P_r + 620 \text{ m}$   | s 12                     | Pr+              | - 720 ms                 | 3                      | $2^2 = 0$                  | 4) P                     | r + 820  ms           | 12        | $2^{11} = (2048)$              | $P_r + 920 \text{ ms}$   |
| 4                                                          | Units of                           | f Year 08             | 4            | $P_r + 630 m$           | s 13                     | Pr+              | - 730 ms                 | 4                      | $2^3 = ($                  | 8) P                     | r + 830 ms            | 13        | $2^{12} = (4096)$              | $P_r + 930 \text{ ms}$   |
| Index Mar                                                  | k $P_r + 5$                        | 540 ms                | 5            | $P_r + 640 m$           | s 14                     | Pr+              | - 740 ms                 | 5                      | $2^4 = (1)^{-1}$           | 6) P                     | r + 840 ms            | 14        | $2^{13} = (8192)$              | $P_r + 940 \text{ ms}$   |
| 5                                                          | Tens of                            | Year 10               | 6            | $P_r + 650 m$           | s 15                     | P <sub>r</sub> + | - 750 ms                 | 6                      | $2^5 = (3)$                | 2) P                     | r + 850 ms            | 15        | 214=(16384)                    | $P_r + 950 \text{ ms}$   |
| 6                                                          | Tens of                            | Year 20               | 7            | $P_r + 660 m$           | s 16                     | Pr+              | 760 ms                   | 7                      | $2^6 = (6)$                | 4) P                     | r + 860 ms            | 16        | $2^{15} = (32768)$             | P <sub>r</sub> +960 ms   |
| 7                                                          | Tens of                            | Year 40               | 8            | $P_r + 670 m$           | s 17                     | P <sub>r</sub> + | - 770 ms                 | 8                      | $2^7 = (12)^{-1}$          | 8) P                     | r + 870 ms            | 17        | 2 <sup>16</sup> =(65536)       | P <sub>r</sub> +970 ms   |
| 8                                                          | Tens of                            | Year 80               | 9            | $P_{r} + 680 m$         | s 18                     | P <sub>r</sub> + | - 780 ms                 | 9                      | $2^8 = (25)^{10}$          | 6) P                     | r + 880 ms            | Ind       | ex Bit                         | P <sub>r</sub> + 980 ms  |
| Position Ide                                               | nt. $P_r + 5$                      | 590 ms                | Position     | $P_r + 690 m$           | s Position               | P <sub>r</sub> + | - 790 ms                 | Position               | n Ident. (P <sub>9</sub> ) | Р                        | r + 890 ms            | Position  | Ident. (P <sub>0</sub> )       | P <sub>r</sub> +990 ms   |
| (P <sub>6</sub> )                                          |                                    |                       | Ident. (P7)  |                         | Ident. (P8               | 3)               |                          |                        |                            |                          |                       |           |                                |                          |
| <sup>1</sup> The bit ti                                    | me is the time                     | me of the b           | it leading e | dge and ret             | fers to the le           | ading edg        | e of P <sub>r</sub> .    |                        |                            |                          |                       |           |                                |                          |

| Table 5-5.         IRIG-B Control Bit Assignment for Year Information |                     |                    |                              |  |  |  |  |  |
|-----------------------------------------------------------------------|---------------------|--------------------|------------------------------|--|--|--|--|--|
| Pos. ID                                                               | Ctrl Bit No         | Designation        | Explanation                  |  |  |  |  |  |
| P <sub>0</sub> to P <sub>5</sub> is                                   | BCD TOY in s        | econds, minutes, l | nours, and days.             |  |  |  |  |  |
| P49                                                                   |                     | P5                 | Position Identifier #5       |  |  |  |  |  |
| P50                                                                   | Year 1              | Year, BCD 1        | Last 2 digits of year in BCD |  |  |  |  |  |
| P <sub>51</sub>                                                       | Year 2              | Year, BCD 2        | IBID                         |  |  |  |  |  |
| P <sub>52</sub>                                                       | Year 3              | Year, BCD 4        | IBID                         |  |  |  |  |  |
| P <sub>53</sub>                                                       | Year 4              | Year, BCD 8        | IBID                         |  |  |  |  |  |
| P <sub>54</sub>                                                       |                     | Not Used           | Unassigned                   |  |  |  |  |  |
| P55                                                                   | Year 5              | Year, BCD 10       | Last 2 digits of year in BCD |  |  |  |  |  |
| P56                                                                   | Year 6              | Year, BCD 20       | IBID                         |  |  |  |  |  |
| P57                                                                   | Year 7              | Year, BCD 20       | IBID                         |  |  |  |  |  |
| P58                                                                   | Year 8              | Year, BCD 20       | IBID                         |  |  |  |  |  |
| P59                                                                   |                     | P <sub>6</sub>     | Position Identifier #6       |  |  |  |  |  |
| P <sub>60</sub>                                                       | 1                   | Not Used           | Control Bit                  |  |  |  |  |  |
| P <sub>61</sub>                                                       | 2                   | IBID               | IBID                         |  |  |  |  |  |
| P <sub>62</sub>                                                       | 3                   | IBID               | IBID                         |  |  |  |  |  |
| P <sub>63</sub>                                                       | 4                   | IBID               | IBID                         |  |  |  |  |  |
| P <sub>64</sub>                                                       | 5                   | IBID               | IBID                         |  |  |  |  |  |
| P <sub>65</sub>                                                       | 6                   | IBID               | IBID                         |  |  |  |  |  |
| P <sub>66</sub>                                                       | 7                   | IBID               | IBID                         |  |  |  |  |  |
| P <sub>67</sub>                                                       | 8                   | IBID               | IBID                         |  |  |  |  |  |
| P <sub>68</sub>                                                       | 9                   | IBID               | IBID                         |  |  |  |  |  |
| P <sub>69</sub>                                                       |                     | P <sub>7</sub>     | Position Identifier #7       |  |  |  |  |  |
| P <sub>70</sub>                                                       | 10                  | Not Used           | Control Bit                  |  |  |  |  |  |
| P <sub>71</sub>                                                       | 11                  | IBID               | IBID                         |  |  |  |  |  |
| P <sub>72</sub>                                                       | 12                  | IBID               | IBID                         |  |  |  |  |  |
| P <sub>73</sub>                                                       | 13                  | IBID               | IBID                         |  |  |  |  |  |
| P <sub>74</sub>                                                       | 14                  | IBID               | IBID                         |  |  |  |  |  |
| P <sub>75</sub>                                                       | 15                  | IBID               | IBID                         |  |  |  |  |  |
| P <sub>76</sub>                                                       | 16                  | IBID               | IBID                         |  |  |  |  |  |
| P <sub>77</sub>                                                       | 17                  | IBID               | IBID                         |  |  |  |  |  |
| P <sub>78</sub>                                                       | 18                  | IBID               | IBID                         |  |  |  |  |  |
| P79                                                                   |                     | P <sub>8</sub>     | Position Identifier #8       |  |  |  |  |  |
| $P_6$ to $P_8$ at                                                     | re control function | ons                |                              |  |  |  |  |  |
| P <sub>8</sub> to P <sub>0</sub> is                                   | TOD in SBS.         |                    |                              |  |  |  |  |  |

| Table 5-6.Parameters for Format B |                                  |  |  |  |  |  |  |
|-----------------------------------|----------------------------------|--|--|--|--|--|--|
| Pulse Rates                       | Pulse Duration                   |  |  |  |  |  |  |
| Bit rate: 100 pps                 | Index marker: 2 ms               |  |  |  |  |  |  |
| Position identifier: 10 pps       | Binary 0 or un-encoded bit: 2 ms |  |  |  |  |  |  |
| Reference mark: 1 pps             | Binary 1 or coded bit: 5 ms      |  |  |  |  |  |  |
|                                   | Position identifiers: 8 ms       |  |  |  |  |  |  |
|                                   | Reference bit: 8 ms              |  |  |  |  |  |  |
| Resolution                        | Mark-To-Space Ratio              |  |  |  |  |  |  |
| 10 ms dc level                    | Nominal value of 10:3            |  |  |  |  |  |  |
| 1 ms modulated 1 kHz carrier      | Range of 3:1 to 6:1              |  |  |  |  |  |  |

#### 5.4 Format D

The following is a detailed description of IRIG time code format D.

- The beginning of each 1-hour time frame is identified by two consecutive 48-second bits,  $P_0$  and  $P_r$ . The leading edge of  $P_r$  is the on-time point for the succeeding time code word. Position identifiers  $P_0$  and  $P_1$  through  $P_5$  each use 1 minute of the time frame, one full index count duration. Position identifiers occur every minute before the leading edge of each succeeding tenth index count (see Figure 5-3).
- The time code word and the control bits presented during the time frame are pulse-width coded. The time code bit rate is 1 ppm. The time code reference bit's leading edge is the on-time reference point for all bits and is the index count reference point. The binary 0 and the index markers each have duration of 12 seconds and the binary 1 has duration of 30 seconds.
- The BCD TOY code consists of 16 bits beginning at index count 20. The subword bits occur between position identifiers P<sub>2</sub> and P<sub>5</sub>: 6 bits for hours and 10 bits for days to complete the time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The LSB occurs first. The code recycles yearly. Each bit position is identified in Table 5-7.
- Nine control bits occur between position identifiers P<sub>5</sub> and P<sub>0</sub>. Any CF bit or combination of bits can be programmed to read a binary 1 or 0 during any specified number of time frames.
- Details of the parameters that characterize the time code for format D are shown in <u>Table</u> <u>5-8</u>.



Figure 5-3. Format D: BCD Time-of-Year in Days and Hours and Control Bits

| Table 5-7.   Format D, Signal D001 |                                                      |                        |                   |                             |                        |                      |                            |                 |  |  |  |
|------------------------------------|------------------------------------------------------|------------------------|-------------------|-----------------------------|------------------------|----------------------|----------------------------|-----------------|--|--|--|
| BCD Time-of-Year Code (16 Digits)  |                                                      |                        |                   |                             |                        |                      |                            |                 |  |  |  |
| Minutes Subword Hours Subword      |                                                      |                        |                   |                             |                        |                      |                            |                 |  |  |  |
| BCD Code                           | Subword Digit                                        | Bit Time <sup>1</sup>  | BCD Code          | Subword Digit               | Bit Time               | BCD Code             | Subword Digit              | Bit Time        |  |  |  |
| Digit No.                          | Wt Minutes                                           |                        | Digit No.         | Wt Minutes                  |                        | Digit No.            | Wt Hours                   |                 |  |  |  |
| Refe                               | erence Bit                                           | Pr                     | Inde              | ex Marker                   | $P_r + 10 \min$        | 1                    | 1                          | $P_r + 20 \min$ |  |  |  |
| Inde                               | x Marker                                             | $P_r + 1 \min$         | Inde              | ex Marker                   | $P_r + 11 \min$        | 2                    | 2                          | $P_r + 21 \min$ |  |  |  |
| Inde                               | x Marker                                             | $P_r + 2 \min$         | Inde              | ex Marker                   | $P_r + 12 \min$        | 3                    | 4                          | $P_r + 22 \min$ |  |  |  |
| Inde                               | x Marker                                             | $P_r + 3 \min$         | Inde              | ex Marker                   | $P_r + 13 \min$        | 4                    | 8                          | $P_r + 23 \min$ |  |  |  |
| Inde                               | x Marker                                             | $P_r + 4 \min$         | Inde              | ex Marker                   | $P_r + 14 \min$        | Index                | x Marker                   | $P_r + 24 \min$ |  |  |  |
| Inde                               | x Marker                                             | $P_r + 5 \min$         | Inde              | ex Marker                   | $P_r + 15 \min$        | 5                    | 10                         | $P_r + 25 \min$ |  |  |  |
| Inde                               | x Marker                                             | $P_r + 6 \min$         | Inde              | ex Marker                   | $P_r + 16 \min$        | 6                    | 20                         | $P_r + 26 \min$ |  |  |  |
| Inde                               | Index Marker $P_r + 7 \min$ Index Marker $P_r + 1^2$ |                        |                   |                             | $P_r + 17 \min$        | Index Marker         |                            | $P_r + 27 \min$ |  |  |  |
| Inde                               | x Marker                                             | $P_r + 8 \min$         | Inde              | ex Marker                   | $P_r + 18 \min$        | Index Marker         |                            | $P_r + 28 \min$ |  |  |  |
| Positio                            | n Ident. (P <sub>1</sub> )                           | $P_r + 9 \min$         | Positio           | n Ident. (P <sub>2</sub> )  | P <sub>r</sub> +19 min | Position             | $P_r + 29 \min$            |                 |  |  |  |
|                                    |                                                      | Days Sul               | oword             |                             |                        | Cor                  | trol Functions (9          | Bits)           |  |  |  |
| BCD Code                           | Subword Digit Wt                                     | Bit Time               | BCD Code          | Subword Digit               | Bit Time               | Control Function Bit |                            | Bit Time        |  |  |  |
| Digit No.                          | Days                                                 |                        | Digit No.         | Wt Days                     |                        |                      |                            |                 |  |  |  |
| 7                                  | 1                                                    | $P_r + 30 \min$        | 15                | 100                         | $P_r + 40 \min$        |                      | 1                          | $P_r + 50 \min$ |  |  |  |
| 8                                  | 2                                                    | $P_r + 31 \min$        | 16                | 200                         | $P_r + 41 \min$        |                      | 2                          | $P_r + 51 \min$ |  |  |  |
| 9                                  | 4                                                    | $P_r + 32 \min$        | Inde              | ex Marker                   | $P_r + 42 \min$        |                      | 3                          | $P_r + 52 \min$ |  |  |  |
| 10                                 | 8                                                    | $P_r + 33 \min$        | Inde              | ex Marker                   | $P_r + 43 \min$        |                      | 4                          | $P_r + 53 \min$ |  |  |  |
| In                                 | dex Bit                                              | $P_r + 34 \min$        | Inde              | ex Marker                   | $P_r + 44 \min$        |                      | 5                          | $P_r + 54 \min$ |  |  |  |
| 11                                 | 10                                                   | $P_r + 35 \min$        | Inde              | ex Marker                   | $P_r + 45 \min$        |                      | 6                          | $P_r + 55 \min$ |  |  |  |
| 12                                 | 20                                                   | $P_r + 36 \min$        | Inde              | ex Marker                   | $P_r + 46 \min$        |                      | 7                          | $P_r + 56 \min$ |  |  |  |
| 13                                 | 40                                                   | P <sub>r</sub> +37 min | Inde              | ex Marker                   | $P_r + 47 \min$        |                      | 8                          | $P_r + 57 \min$ |  |  |  |
| 14                                 | 80                                                   | $P_r + 38 \min$        | Inde              | ex Marker                   | $P_r + 48 \min$        |                      | 9                          | $P_r + 58 \min$ |  |  |  |
| Positio                            | n Ident. (P <sub>4</sub> )                           | $P_r + 39 \min$        | Positio           | on Ident. (P <sub>5</sub> ) | $P_r + 49 \min$        | Position             | n Ident. (P <sub>0</sub> ) | $P_r + 59 \min$ |  |  |  |
| <sup>1</sup> The bit time is       | the time of the bit lea                              | ading edge and i       | refers to the lea | ading edge of Pr.           |                        |                      |                            |                 |  |  |  |

| Table 5-8.Parameters for Format D |                                  |  |  |  |  |  |  |
|-----------------------------------|----------------------------------|--|--|--|--|--|--|
| Pulse Rates                       | Pulse Duration                   |  |  |  |  |  |  |
| Bit rate: 1 ppm                   | Index marker: 12 s               |  |  |  |  |  |  |
| Position identifiers: 6 pph       | Binary 0 or un-encoded bit: 12 s |  |  |  |  |  |  |
| Reference mark: 1 pph             | Binary 1 or coded bit: 30 s      |  |  |  |  |  |  |
|                                   | Position identifiers: 48 s       |  |  |  |  |  |  |
|                                   | Reference bit: 48 s              |  |  |  |  |  |  |
| Resolution                        | Mark-To-Space Ratio              |  |  |  |  |  |  |
| 1 m dc level                      | Nominal value of 10:1            |  |  |  |  |  |  |
| 10 ms modulated 100 Hz carrier    | Range of 3:1 to 6:1              |  |  |  |  |  |  |
| 1 ms modulated 1 kHz carrier      |                                  |  |  |  |  |  |  |

#### 5.5 Format E

The following is a detailed description of IRIG time code format E.

- The beginning of each 10-second time frame is identified by two consecutive 80-ms bits,  $P_0$  and  $P_r$ . The leading edge of  $P_r$  is the on-time reference point for the succeeding time code words. Position identifiers  $P_0$  and  $P_1$  through  $P_9$  each use 100 ms of the time frame, one full index count duration. Position identifiers occur every 0.1 second before the leading edge of each succeeding tenth index count (see Figure 5-4).
- The time code words and CFs presented during the time frame are pulse-width coded. The time code bit rate is 10 pps. The time code reference bit's leading edge is the ontime reference point for all bits and is the index count reference point. The binary 1 and index markers have duration of 20 ms and the binary 1 has duration of 50 ms.
- The BCD TOY code word consists of 26 bits beginning at index count 6. The coded subword bits occur between position identifiers P<sub>0</sub> and P<sub>5</sub>: 3 for tens of seconds, 7 for minutes, 6 for hours, and 10 for days. Year information is coded in 8 bits occurring between position identifiers P<sub>5</sub> and P<sub>6</sub> to complete the BCD time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The LSB occurs first. The code recycles yearly. Each bit position is identified in Table 5-9.
- There are 18 CF bits occurring between position identifiers P<sub>6</sub> and P<sub>8</sub>. Any CF bit or combination of bits can be programmed to read a binary 1 or 0 during any specified number of time frames.
- Control bit assignments, functions, and parameters for time code format E are shown on the following pages.

<u>Table 5-10</u>: IRIG-E control bit assignment for year information. <u>Table 5-11</u>: Parameters for format E.



Figure 5-4. Format E: BCD Time-of-Year in Days, Hours, Minutes, Seconds, and Year and Control Bits

|                                   | Table 5-9.   Format E, Signal E001 |                                                                                                          |                                                                                                                                                                                                                                  |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                             |                                                                                                                                                                                                                                       |                         |                         |
|-----------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|
| BCD Time-Of-Year Code (26 Digits) |                                    |                                                                                                          |                                                                                                                                                                                                                                  |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                             |                                                                                                                                                                                                                                       |                         |                         |
| S                                 | econds Subw                        | vord                                                                                                     | M                                                                                                                                                                                                                                | inutes Subwo                                                                                                                                                            | ord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hours Subword                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Days Subword                                                                                                                                                                                                                                    |                                                                                                                                                                                                             |                                                                                                                                                                                                                                       |                         |                         |
| BCD                               | Subword                            | Bit Time <sup>1</sup>                                                                                    | BCD                                                                                                                                                                                                                              | Subword                                                                                                                                                                 | Bit Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BCD                                                                                                                                                                                                                                                                                  | Subwor                                                                                                                                                                                                              | rd Bit Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e BCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Subword                                                                                                                                                                                                                                         | Bit Time                                                                                                                                                                                                    | BCD                                                                                                                                                                                                                                   | Subword                 | Bit Time                |
| Code                              | Digit Wt                           |                                                                                                          | Code                                                                                                                                                                                                                             | Digit Wt                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Code                                                                                                                                                                                                                                                                                 | Digit W                                                                                                                                                                                                             | √t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Digit Wt                                                                                                                                                                                                                                        |                                                                                                                                                                                                             | Code                                                                                                                                                                                                                                  | Digit Wt                |                         |
| Digit No.                         | Seconds                            | _                                                                                                        | Digit No.                                                                                                                                                                                                                        | Minutes                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Digit No.                                                                                                                                                                                                                                                                            | Hours                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Digit N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lo. Days                                                                                                                                                                                                                                        |                                                                                                                                                                                                             | Digit No.                                                                                                                                                                                                                             | Days                    |                         |
| Refere                            | nce Bit                            | Pr                                                                                                       | 4                                                                                                                                                                                                                                | 1                                                                                                                                                                       | $P_r + 1.0 \text{ sec}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                   | $P_r + 2.0 s_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ec 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                               | $P_r + 3.0 \text{ sec}$                                                                                                                                                                                     | 25                                                                                                                                                                                                                                    | 100                     | $P_r + 4.0 \text{ sec}$ |
| Index                             | Marker                             | $P_r + 0.1 \text{ sec}$                                                                                  | 5                                                                                                                                                                                                                                | 2                                                                                                                                                                       | $P_r + 1.1 \text{ sec}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                   | $P_r + 2.1 s_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ec 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                               | $P_r + 3.1 \text{ sec}$                                                                                                                                                                                     | 26                                                                                                                                                                                                                                    | 200                     | $P_r + 4.1$ sec         |
| Index                             | Marker                             | $P_r + 0.2 \text{ sec}$                                                                                  | 6                                                                                                                                                                                                                                | 4                                                                                                                                                                       | $P_r + 1.2 \text{ sec}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                   | $P_r + 2.2 s_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ec 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                               | $P_r + 3.2 \text{ sec}$                                                                                                                                                                                     | Index                                                                                                                                                                                                                                 | Marker                  | $P_r + 4.2 \text{ sec}$ |
| Index                             | Marker                             | $P_r + 0.3 \text{ sec}$                                                                                  | 7                                                                                                                                                                                                                                | 8                                                                                                                                                                       | $P_r + 1.3 \text{ sec}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                   | $P_r + 2.3 s_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ec 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                                                                                                                                                                                               | $P_r + 3.3 \text{ sec}$                                                                                                                                                                                     | Index                                                                                                                                                                                                                                 | Marker                  | $P_r + 4.3 \text{ sec}$ |
| Index                             | Marker                             | $P_r + 0.4 \text{ sec}$                                                                                  | Index M                                                                                                                                                                                                                          | Marker                                                                                                                                                                  | $P_r + 1.4$ sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Index                                                                                                                                                                                                                                                                                | Marker                                                                                                                                                                                                              | $P_r + 2.4 s_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ec In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dex Marker                                                                                                                                                                                                                                      | $P_r + 3.4 \text{ sec}$                                                                                                                                                                                     | Index                                                                                                                                                                                                                                 | Marker                  | $P_r + 4.4$ sec         |
| Index                             | Marker                             | $P_r + 0.5 \text{ sec}$                                                                                  | 8                                                                                                                                                                                                                                | 10                                                                                                                                                                      | $P_r + 1.5 \text{ sec}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                  | $P_r + 2.5 s_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ec 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                              | $P_r + 3.5 \text{ sec}$                                                                                                                                                                                     | Index                                                                                                                                                                                                                                 | Marker                  | $P_r + 4.5 \text{ sec}$ |
| 1                                 | 10                                 | $P_r + 0.6 \text{ sec}$                                                                                  | 9                                                                                                                                                                                                                                | 20                                                                                                                                                                      | $P_r + 1.6 \text{ sec}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                  | $P_r + 2.6 s_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ec 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                              | $P_r + 3.6 \text{ sec}$                                                                                                                                                                                     | Index                                                                                                                                                                                                                                 | Marker                  | $P_r + 4.6 \text{ sec}$ |
| 2                                 | 20                                 | $P_r + 0.7 \text{ sec}$                                                                                  | 10                                                                                                                                                                                                                               | 40                                                                                                                                                                      | $P_r + 1.7 \text{ sec}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Index                                                                                                                                                                                                                                                                                | Marker                                                                                                                                                                                                              | $P_r + 2.7 s_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ec 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                                                                                                                                                                                                              | $P_r + 3.7 \text{ sec}$                                                                                                                                                                                     | Index                                                                                                                                                                                                                                 | Marker                  | $P_r + 4.7 \text{ sec}$ |
| 3                                 | 40                                 | $P_r + 0.8 \text{ sec}$                                                                                  | Index M                                                                                                                                                                                                                          | Marker                                                                                                                                                                  | $P_r + 1.8 \text{ sec}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Index                                                                                                                                                                                                                                                                                | Marker                                                                                                                                                                                                              | $P_r + 2.8 s_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ec 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                                                                                                                                                                                                                                              | $P_r + 3.8 \text{ sec}$                                                                                                                                                                                     | Index Marker                                                                                                                                                                                                                          |                         | $P_r + 4.8 \text{ sec}$ |
| Position 1                        | ldent (P <sub>1</sub> )            | $P_r + 0.9 \text{ sec}$                                                                                  | Position I                                                                                                                                                                                                                       | dent. $(P_2)$                                                                                                                                                           | $P_r + 1.9 \text{ sec}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Position                                                                                                                                                                                                                                                                             | Ident $(P_2)$                                                                                                                                                                                                       | $P_r + 2.9 sc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | POST POST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ion Ident. (P <sub>4</sub> )                                                                                                                                                                                                                    | $P_{1} + 3.9 \text{ sec}$                                                                                                                                                                                   | Position                                                                                                                                                                                                                              | dent. (P <sub>5</sub> ) | $P_r + 4.9 \text{ sec}$ |
|                                   |                                    | -1. 012 011                                                                                              |                                                                                                                                                                                                                                  |                                                                                                                                                                         | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 001000                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     | 11:200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1011 Identi (I 4)                                                                                                                                                                                                                               | -1                                                                                                                                                                                                          |                                                                                                                                                                                                                                       | (= 5)                   | -1                      |
|                                   |                                    | -1                                                                                                       |                                                                                                                                                                                                                                  | (- 2)                                                                                                                                                                   | Year A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nd Contro                                                                                                                                                                                                                                                                            | ol Functi                                                                                                                                                                                                           | ions And SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BS (43 Bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )                                                                                                                                                                                                                                               |                                                                                                                                                                                                             |                                                                                                                                                                                                                                       | (= 5)                   |                         |
|                                   | <u>-</u>                           | Year                                                                                                     | Bit Time                                                                                                                                                                                                                         | Control                                                                                                                                                                 | Year A<br>Bit Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd Contro                                                                                                                                                                                                                                                                            | ol Functi                                                                                                                                                                                                           | ions And SE<br>Bit Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BS (43 Bits<br>Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) Bit Time                                                                                                                                                                                                                                      | Control                                                                                                                                                                                                     | Bit Time                                                                                                                                                                                                                              |                         |                         |
|                                   | -                                  | Year<br>Function                                                                                         | Bit Time                                                                                                                                                                                                                         | Control<br>Function                                                                                                                                                     | Year A<br>Bit Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd Contro<br>ne Co<br>Fun                                                                                                                                                                                                                                                            | ol Functi<br>ntrol                                                                                                                                                                                                  | ions And SE<br>Bit Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BS (43 Bits<br>Control<br>Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) Bit Time                                                                                                                                                                                                                                      | Control<br>Function                                                                                                                                                                                         | Bit Time                                                                                                                                                                                                                              |                         |                         |
|                                   |                                    | Year<br>Function<br>Bit                                                                                  | Bit Time                                                                                                                                                                                                                         | Control<br>Function<br>Bit                                                                                                                                              | Year A<br>Bit Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd Contro<br>ne Co<br>Fun                                                                                                                                                                                                                                                            | ol Functi<br>ntrol<br>action<br>Bit                                                                                                                                                                                 | ions And SE<br>Bit Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3S (43 Bits<br>Control<br>Function<br>Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) Bit Time                                                                                                                                                                                                                                      | Control<br>Function<br>Bit                                                                                                                                                                                  | Bit Time                                                                                                                                                                                                                              |                         | 1 - 1 - 13 - 11         |
|                                   |                                    | Year<br>Function<br>Bit<br>1                                                                             | <b>Bit Time</b> $P_r + 5.0 \text{ sec}$                                                                                                                                                                                          | Control<br>Function<br>Bit                                                                                                                                              | Year A           Bit Time           Pr + 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd Contro<br>ne Co<br>Fun<br>sec                                                                                                                                                                                                                                                     | DI Functi<br>ntrol<br>action<br>Bit<br>10                                                                                                                                                                           | ions And SE<br>Bit Time<br>P <sub>r</sub> +7.0 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BS (43 Bits<br>Control<br>Function<br>Bit<br>2 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) Bit Time P <sub>r</sub> + 8.0 sec                                                                                                                                                                                                             | Control<br>Function<br>Bit<br>2 <sup>9</sup>                                                                                                                                                                | <b>Bit Time</b><br>P <sub>r</sub> +9.0 sec                                                                                                                                                                                            |                         |                         |
|                                   |                                    | Year<br>Function<br>Bit<br>1<br>2                                                                        | Bit Time<br>$P_r + 5.0 \text{ sec}$<br>$P_r + 5.1 \text{ sec}$                                                                                                                                                                   | Control<br>Function<br>Bit<br>1<br>2                                                                                                                                    | Year AIBit Tin $P_r + 6.0$ $P_r + 6.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nd Contro<br>ne Co<br>Fun<br>sec<br>sec                                                                                                                                                                                                                                              | DI Functi<br>ntrol<br>action<br>Bit<br>10<br>11                                                                                                                                                                     | ions And SE<br>Bit Time<br>$P_r + 7.0 \text{ sec}$<br>$P_r + 7.1 \text{ sec}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BS (43 Bits<br>Control<br>Function<br>Bit<br>2 <sup>0</sup><br>2 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bit Time           Pr+8.0 sec           Pr+8.1 sec                                                                                                                                                                                              | Control<br>Function<br>Bit<br>2 <sup>9</sup><br>2 <sup>10</sup>                                                                                                                                             | Bit Time<br>$P_r + 9.0 \sec P_r + 9.1 \sec P_r$                                                                                                                                                                                       |                         |                         |
|                                   |                                    | Year<br>Function<br>Bit<br>1<br>2<br>4                                                                   | Bit Time           Pr + 5.0 sec           Pr + 5.1 sec           Pr + 5.2 sec                                                                                                                                                    | Control<br>Function<br>Bit<br>1<br>2<br>3                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd Contro<br>ne Co<br>Fun<br>sec<br>sec<br>sec<br>sec                                                                                                                                                                                                                                | Diffunction       ntrol       action       Bit       10       11       12                                                                                                                                           | ions And SE<br>Bit Time<br>$P_r + 7.0 \sec P_r + 7.1 \sec P_r + 7.2 \sec P_r + 7$ | $\frac{\mathbf{BS} \text{ (43 Bits}}{\mathbf{Control}}$ $\frac{\mathbf{Bit}}{2^{0}}$ $\frac{2^{1}}{2^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bit Time           Pr+8.0 sec           Pr+8.1 sec           Pr+8.2 sec                                                                                                                                                                         | Control<br>Function<br>Bit           2 <sup>9</sup> 2 <sup>10</sup> 2 <sup>11</sup>                                                                                                                         | Bit Time $P_r + 9.0$ sec $P_r + 9.1$ sec $P_r + 9.2$ sec                                                                                                                                                                              |                         |                         |
|                                   |                                    | Year<br>Function<br>Bit<br>1<br>2<br>4<br>8                                                              | Bit Time           Pr + 5.0 sec           Pr + 5.1 sec           Pr + 5.2 sec           Pr + 5.3 sec                                                                                                                             | Control<br>Function<br>Bit<br>1<br>2<br>3<br>4                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd Contro<br>ne Co<br>Fun<br>sec<br>sec<br>sec<br>sec<br>sec                                                                                                                                                                                                                         | bl Functi<br>ntrol<br>action<br>Bit<br>10<br>11<br>12<br>13                                                                                                                                                         | $P_r + 7.0 \text{ sec}$ $P_r + 7.1 \text{ sec}$ $P_r + 7.2 \text{ sec}$ $P_r + 7.3 \text{ sec}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{\mathbf{S}  \mathbf{(43 Bits}}{\mathbf{Control}}$ $\frac{\mathbf{S}  \mathbf{(43 Bits})}{\mathbf{Function}}$ $\frac{2^{0}}{2^{1}}$ $\frac{2^{2}}{2^{3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bit Time           Pr+8.0 sec           Pr+8.1 sec           Pr+8.2 sec           Pr+8.3 sec                                                                                                                                                    | $\begin{tabular}{ c c c c c } \hline Control \\ \hline Function \\ \hline Bit \\ \hline 2^9 \\ 2^{10} \\ 2^{11} \\ 2^{12} \end{tabular}$                                                                    | Bit Time $P_r + 9.0$ sec $P_r + 9.1$ sec $P_r + 9.2$ sec $P_r + 9.3$ sec                                                                                                                                                              |                         |                         |
|                                   |                                    | Year<br>Function<br>Bit<br>1<br>2<br>4<br>8<br>Index                                                     | Bit Time           Pr + 5.0 sec           Pr + 5.1 sec           Pr + 5.2 sec           Pr + 5.3 sec           Pr + 5.4 sec                                                                                                      | Control<br>Function<br>Bit<br>1<br>2<br>3<br>4<br>5                                                                                                                     | $\begin{array}{c c} \hline Y ear A \\ \hline Bit Tim \\ \hline \\ P_r + 6.0 \\ \hline \\ P_r + 6.1 \\ \hline \\ P_r + 6.2 \\ \hline \\ P_r + 6.3 \\ \hline \\ P_r + 6.4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd Contro<br>ne Co<br>Fun<br>sec<br>sec<br>sec<br>sec<br>sec<br>sec                                                                                                                                                                                                                  | bl Functi<br>ntrol<br>action<br>Bit<br>10<br>11<br>12<br>13<br>14                                                                                                                                                   | $\frac{P_r + 7.0 \text{ sec}}{P_r + 7.0 \text{ sec}}$ $\frac{P_r + 7.1 \text{ sec}}{P_r + 7.2 \text{ sec}}$ $\frac{P_r + 7.3 \text{ sec}}{P_r + 7.3 \text{ sec}}$ $\frac{P_r + 7.4 \text{ sec}}{P_r + 7.4 \text{ sec}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S         (43 Bits           Control         Function           Bit         2 <sup>0</sup> 2 <sup>1</sup> 2 <sup>2</sup> 2 <sup>3</sup> 2 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bit Time           Pr+8.0 sec           Pr+8.1 sec           Pr+8.2 sec           Pr+8.3 sec           Pr+8.4 sec                                                                                                                               | $\begin{tabular}{ c c c c c } \hline Control \\ \hline Function \\ Bit \\ \hline 2^9 \\ 2^{10} \\ 2^{11} \\ 2^{12} \\ 2^{13} \\ \hline \end{array}$                                                         | Bit Time $P_r + 9.0$ sec $P_r + 9.1$ sec $P_r + 9.2$ sec $P_r + 9.3$ sec $P_r + 9.4$ sec                                                                                                                                              |                         |                         |
|                                   |                                    | Year<br>Function<br>Bit<br>1<br>2<br>4<br>8<br>Index<br>Marker                                           | Bit Time           Pr + 5.0 sec           Pr + 5.1 sec           Pr + 5.2 sec           Pr + 5.3 sec           Pr + 5.4 sec                                                                                                      | Control<br>Function<br>Bit<br>1<br>2<br>3<br>4<br>5                                                                                                                     | $\begin{array}{c c} \hline Y ear A \\ \hline Bit Tim \\ \hline \\ P_r + 6.0 \\ \hline P_r + 6.1 \\ \hline P_r + 6.2 \\ \hline P_r + 6.3 \\ \hline P_r + 6.4 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd Contro<br>ne Co<br>Fun<br>sec<br>sec<br>sec<br>sec<br>sec<br>sec                                                                                                                                                                                                                  | bl Functi<br>ntrol<br>action<br>Bit<br>10<br>11<br>12<br>13<br>14                                                                                                                                                   | $\frac{P_r + 7.0 \text{ sec}}{P_r + 7.0 \text{ sec}}$ $\frac{P_r + 7.1 \text{ sec}}{P_r + 7.2 \text{ sec}}$ $\frac{P_r + 7.3 \text{ sec}}{P_r + 7.4 \text{ sec}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S         (43 Bits           Control         Function           Bit         2 <sup>0</sup> 2 <sup>1</sup> 2 <sup>2</sup> 2 <sup>3</sup> 2 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bit Time           P <sub>r</sub> + 8.0 sec           P <sub>r</sub> + 8.1 sec           P <sub>r</sub> + 8.2 sec           P <sub>r</sub> + 8.3 sec           P <sub>r</sub> + 8.4 sec                                                         | $\begin{tabular}{ c c c c c } \hline Control \\ \hline Function \\ Bit \\ \hline 2^9 \\ 2^{10} \\ 2^{11} \\ 2^{12} \\ 2^{13} \\ \hline \end{array}$                                                         | Bit Time $P_r + 9.0$ sec $P_r + 9.1$ sec $P_r + 9.2$ sec $P_r + 9.3$ sec $P_r + 9.4$ sec                                                                                                                                              |                         |                         |
|                                   |                                    | Year<br>Function<br>Bit<br>1<br>2<br>4<br>8<br>Index<br>Marker<br>6                                      | Bit Time $P_r + 5.0 \text{ sec}$ $P_r + 5.1 \text{ sec}$ $P_r + 5.2 \text{ sec}$ $P_r + 5.3 \text{ sec}$ $P_r + 5.4 \text{ sec}$ $P_r + 5.5 \text{ sec}$                                                                         | Control<br>Function<br>Bit<br>1<br>2<br>3<br>4<br>4<br>5<br>6                                                                                                           | $\begin{tabular}{ c c c c c } \hline Vear A \\ \hline Bit Tim \\ \hline \\ \hline \\ P_r + 6.0 \\ \hline \\ P_r + 6.1 \\ \hline \\ P_r + 6.2 \\ \hline \\ P_r + 6.3 \\ \hline \\ P_r + 6.4 \\ \hline \\ P_r + 6.5 \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd Contro<br>ne Co<br>Fun<br>sec<br>sec<br>sec<br>sec<br>sec<br>sec<br>sec                                                                                                                                                                                                           | ol Functi           ntrol           action           Bit           10           11           12           13           14           15                                                                              | $\frac{P_r + 7.0 \text{ sec}}{P_r + 7.0 \text{ sec}}$ $\frac{P_r + 7.1 \text{ sec}}{P_r + 7.2 \text{ sec}}$ $\frac{P_r + 7.3 \text{ sec}}{P_r + 7.4 \text{ sec}}$ $\frac{P_r + 7.5 \text{ sec}}{P_r + 7.5 \text{ sec}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{33}{2^{0}} \frac{(43 \text{ Bits})}{2^{0}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bit Time           Pr+8.0 sec           Pr+8.1 sec           Pr+8.2 sec           Pr+8.3 sec           Pr+8.4 sec           Pr+8.5 sec                                                                                                          | $\begin{tabular}{ c c c c c } \hline Control \\ \hline Function \\ Bit \\ \hline 2^9 \\ 2^{10} \\ 2^{11} \\ 2^{12} \\ 2^{12} \\ 2^{13} \\ \hline 2^{14} \\ \hline \end{array}$                              | Bit Time $P_r + 9.0$ sec $P_r + 9.1$ sec $P_r + 9.2$ sec $P_r + 9.3$ sec $P_r + 9.4$ sec $P_r + 9.5$ sec                                                                                                                              |                         |                         |
|                                   |                                    | Year<br>Function<br>Bit<br>1<br>2<br>4<br>8<br>Index<br>Marker<br>6<br>7                                 | Bit Time $P_r + 5.0 \text{ sec}$ $P_r + 5.1 \text{ sec}$ $P_r + 5.2 \text{ sec}$ $P_r + 5.3 \text{ sec}$ $P_r + 5.4 \text{ sec}$ $P_r + 5.5 \text{ sec}$ $P_r + 5.6 \text{ sec}$                                                 | Control           Function           Bit           1           2           3           4           5           6           7                                            | $\begin{tabular}{ c c c c c } \hline Vear A \\ \hline Bit Tim \\ \hline \\ \hline \\ P_r + 6.0 \\ \hline \\ P_r + 6.1 \\ \hline \\ P_r + 6.2 \\ \hline \\ P_r + 6.3 \\ \hline \\ P_r + 6.5 \\ \hline \\ P_r + 6.6 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd Contro<br>ne Co<br>Fun<br>sec<br>sec<br>sec<br>sec<br>sec<br>sec<br>sec<br>sec<br>sec                                                                                                                                                                                             | ol Functi           ntrol           action           Bit           10           11           12           13           14           15           16                                                                 | $\frac{P_r + 7.0 \text{ sec}}{P_r + 7.0 \text{ sec}}$ $\frac{P_r + 7.1 \text{ sec}}{P_r + 7.2 \text{ sec}}$ $\frac{P_r + 7.3 \text{ sec}}{P_r + 7.4 \text{ sec}}$ $\frac{P_r + 7.5 \text{ sec}}{P_r + 7.6 \text{ sec}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{33}{2^{0}} \frac{(43 \text{ Bits})}{2^{0}} \frac{2^{1}}{2^{2}} \frac{2^{3}}{2^{4}} \frac{2^{5}}{2^{6}} \frac{2^{5}}{2^{6}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bit Time           Pr+8.0 sec           Pr+8.1 sec           Pr+8.2 sec           Pr+8.3 sec           Pr+8.4 sec           Pr+8.5 sec           Pr+8.5 sec           Pr+8.6 sec                                                                | $\begin{tabular}{ c c c c c } \hline Control \\ \hline Function \\ Bit \\ \hline 2^9 \\ 2^{10} \\ 2^{11} \\ 2^{12} \\ 2^{12} \\ 2^{13} \\ \hline 2^{14} \\ 2^{15} \\ \hline \end{array}$                    | Bit Time $P_r + 9.0 \sec$ $P_r + 9.1 \sec$ $P_r + 9.2 \sec$ $P_r + 9.3 \sec$ $P_r + 9.3 \sec$ $P_r + 9.4 \sec$ $P_r + 9.5 \sec$ $P_r + 9.6 \sec$                                                                                      |                         |                         |
|                                   |                                    | Year<br>Function<br>Bit<br>1<br>2<br>4<br>8<br>Index<br>Marker<br>6<br>7<br>8                            | Bit Time $P_r + 5.0 \text{ sec}$ $P_r + 5.1 \text{ sec}$ $P_r + 5.2 \text{ sec}$ $P_r + 5.3 \text{ sec}$ $P_r + 5.4 \text{ sec}$ $P_r + 5.5 \text{ sec}$ $P_r + 5.6 \text{ sec}$ $P_r + 5.7 \text{ sec}$                         | Control           Function           Bit           1           2           3           4           5           6           7           8                                | $\begin{tabular}{ c c c c c } \hline Vear A \\ \hline Bit Tim \\ \hline \\ \hline \\ P_r + 6.0 \\ \hline \\ P_r + 6.1 \\ \hline \\ P_r + 6.2 \\ \hline \\ P_r + 6.3 \\ \hline \\ P_r + 6.5 \\ \hline \\ P_r + 6.6 \\ \hline \\ P_r + 6.7 \\ \hline \\ P_r + 6.7 \\ \hline \\ \hline \\ P_r + 6.7 \\ $ | nd Contro<br>ne Co<br>Fun<br>sec<br>sec<br>sec<br>sec<br>sec<br>sec<br>sec<br>sec<br>sec<br>sec                                                                                                                                                                                      | Diffunction           ntrol           action           Bit           10           11           12           13           14           15           16           17                                                  | $\frac{P_r + 7.0 \text{ sec}}{P_r + 7.0 \text{ sec}}$ $\frac{P_r + 7.1 \text{ sec}}{P_r + 7.2 \text{ sec}}$ $\frac{P_r + 7.2 \text{ sec}}{P_r + 7.3 \text{ sec}}$ $\frac{P_r + 7.5 \text{ sec}}{P_r + 7.6 \text{ sec}}$ $\frac{P_r + 7.7 \text{ sec}}{P_r + 7.7 \text{ sec}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{33}{2^{0}} \frac{(43 \text{ Bits})}{2^{0}}$ $\frac{2^{0}}{2^{1}}$ $\frac{2^{2}}{2^{2}}$ $\frac{2^{3}}{2^{4}}$ $\frac{2^{5}}{2^{6}}$ $\frac{2^{7}}{2^{7}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bit Time           Pr+8.0 sec           Pr+8.1 sec           Pr+8.2 sec           Pr+8.3 sec           Pr+8.4 sec           Pr+8.5 sec           Pr+8.5 sec           Pr+8.7 sec                                                                | $\begin{tabular}{ c c c c c } \hline Control \\ \hline Function \\ Bit \\ \hline 2^9 \\ 2^{10} \\ 2^{11} \\ 2^{12} \\ 2^{12} \\ 2^{13} \\ \hline 2^{14} \\ 2^{15} \\ 2^{16} \\ \hline 2^{16} \end{tabular}$ | Bit Time $P_r + 9.0 \sec$ $P_r + 9.1 \sec$ $P_r + 9.2 \sec$ $P_r + 9.3 \sec$ $P_r + 9.3 \sec$ $P_r + 9.4 \sec$ $P_r + 9.5 \sec$ $P_r + 9.6 \sec$ $P_r + 9.7 \sec$                                                                     |                         |                         |
|                                   |                                    | Year<br>Function<br>Bit<br>1<br>2<br>4<br>8<br>Index<br>Marker<br>6<br>7<br>8<br>9                       | Bit Time $P_r + 5.0 \text{ sec}$ $P_r + 5.1 \text{ sec}$ $P_r + 5.2 \text{ sec}$ $P_r + 5.3 \text{ sec}$ $P_r + 5.4 \text{ sec}$ $P_r + 5.5 \text{ sec}$ $P_r + 5.6 \text{ sec}$ $P_r + 5.7 \text{ sec}$ $P_r + 5.8 \text{ sec}$ | Control           Function           Bit           1           2           3           4           5           6           7           8           9                    | $\begin{tabular}{ c c c c c } \hline $Vear A \\ \hline $Bit Tim $n$ \\ \hline $P_r + 6.0$ \\ \hline $P_r + 6.1$ \\ \hline $P_r + 6.2$ \\ \hline $P_r + 6.3$ \\ \hline $P_r + 6.4$ \\ \hline $P_r + 6.5$ \\ \hline $P_r + 6.6$ \\ \hline $P_r + 6.7$ \\ \hline $P_r + 6.8$ \\ \hline $                                                                                                                                    | nd Contro<br>ne Co<br>Fun<br>Sec<br>Sec<br>Sec<br>Sec<br>Sec<br>Sec<br>Sec<br>Sec                                                                                                                                                                                                    | Diffunction           ntrol           action           Bit           10           11           12           13           14           15           16           17           18                                     | $\frac{P_r + 7.0 \text{ sec}}{P_r + 7.0 \text{ sec}}$ $\frac{P_r + 7.1 \text{ sec}}{P_r + 7.2 \text{ sec}}$ $\frac{P_r + 7.2 \text{ sec}}{P_r + 7.3 \text{ sec}}$ $\frac{P_r + 7.4 \text{ sec}}{P_r + 7.6 \text{ sec}}$ $\frac{P_r + 7.7 \text{ sec}}{P_r + 7.8 \text{ sec}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{33}{2^{0}} \frac{(43 \text{ Bits})}{2^{0}}$ $\frac{2^{0}}{2^{1}}$ $\frac{2^{0}}{2^{2}}$ $\frac{2^{3}}{2^{4}}$ $\frac{2^{5}}{2^{6}}$ $\frac{2^{5}}{2^{7}}$ $\frac{2^{8}}{2^{8}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bit Time           Pr + 8.0 sec           Pr + 8.1 sec           Pr + 8.2 sec           Pr + 8.3 sec           Pr + 8.4 sec           Pr + 8.5 sec           Pr + 8.5 sec           Pr + 8.7 sec           Pr + 8.7 sec           Pr + 8.8 sec  | $\begin{tabular}{ c c c c c } \hline Control \\ \hline Function \\ Bit \\ \hline 2^9 \\ 2^{10} \\ 2^{11} \\ 2^{12} \\ 2^{12} \\ 2^{13} \\ \hline 2^{14} \\ 2^{15} \\ 2^{16} \\ \hline Index \end{tabular}$  | Bit Time $P_r + 9.0 \sec$ $P_r + 9.1 \sec$ $P_r + 9.1 \sec$ $P_r + 9.2 \sec$ $P_r + 9.3 \sec$ $P_r + 9.3 \sec$ $P_r + 9.5 \sec$ $P_r + 9.8 \sec$ |                         |                         |
|                                   |                                    | Year<br>Function<br>Bit<br>1<br>2<br>4<br>8<br>Index<br>Marker<br>6<br>7<br>8<br>8<br>9                  | Bit Time $P_r + 5.0 \text{ sec}$ $P_r + 5.1 \text{ sec}$ $P_r + 5.2 \text{ sec}$ $P_r + 5.3 \text{ sec}$ $P_r + 5.5 \text{ sec}$ $P_r + 5.6 \text{ sec}$ $P_r + 5.7 \text{ sec}$ $P_r + 5.8 \text{ sec}$                         | Control           Function           Bit           1           2           3           4           5           6           7           8           9                    | Year A           Bit Tin $P_r + 6.0$ $P_r + 6.1$ $P_r + 6.2$ $P_r + 6.3$ $P_r + 6.4$ $P_r + 6.5$ $P_r + 6.6$ $P_r + 6.7$ $P_r + 6.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd Control       ne     Co       Fun     I       sec     sec       sec     sec | Diffunction           ntrol           action           Bit           10           11           12           13           14           15           16           17           18                                     | $\frac{P_r + 7.0 \text{ sec}}{P_r + 7.0 \text{ sec}}$ $\frac{P_r + 7.1 \text{ sec}}{P_r + 7.2 \text{ sec}}$ $\frac{P_r + 7.2 \text{ sec}}{P_r + 7.3 \text{ sec}}$ $\frac{P_r + 7.5 \text{ sec}}{P_r + 7.6 \text{ sec}}$ $\frac{P_r + 7.7 \text{ sec}}{P_r + 7.8 \text{ sec}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{33}{20} = \frac{100}{20}$ $\frac{33}{20} = \frac{100}{20}$ $\frac{100}{20}$ $100$ | Bit Time           Pr + 8.0 sec           Pr + 8.1 sec           Pr + 8.2 sec           Pr + 8.3 sec           Pr + 8.4 sec           Pr + 8.5 sec           Pr + 8.5 sec           Pr + 8.7 sec           Pr + 8.8 sec                         | Control<br>Function<br>Bit           29           210           211           212           213           214           215           216           Index           Marker                                  | Bit Time $P_r + 9.0 \sec$ $P_r + 9.1 \sec$ $P_r + 9.2 \sec$ $P_r + 9.3 \sec$ $P_r + 9.3 \sec$ $P_r + 9.5 \sec$ $P_r + 9.5 \sec$ $P_r + 9.6 \sec$ $P_r + 9.7 \sec$ $P_r + 9.8 \sec$                                                    |                         |                         |
|                                   |                                    | Year<br>Function<br>Bit<br>1<br>2<br>4<br>8<br>Index<br>Marker<br>6<br>7<br>8<br>8<br>9<br>9<br>Position | Bit Time $P_r + 5.0 \sec$ $P_r + 5.1 \sec$ $P_r + 5.2 \sec$ $P_r + 5.3 \sec$ $P_r + 5.5 \sec$ $P_r + 5.5 \sec$ $P_r + 5.6 \sec$ $P_r + 5.7 \sec$ $P_r + 5.8 \sec$ $P_r + 5.8 \sec$ $P_r + 5.9 \sec$                              | Control           Function           Bit           1           2           3           4           5           6           7           8           9           Position | Year A           Bit Tin $P_r + 6.1$ $P_r + 6.1$ $P_r + 6.3$ $P_r + 6.4$ $P_r + 6.6$ $P_r + 6.6$ $P_r + 6.8$ $P_r + 6.8$ $P_r + 6.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd Control       ne     Co       Fun     1       sec     sec                   | Isolation         Function           ntrol         section           Bit         10           11         12           13         14           15         16           17         18           sition         sition | $P_r + 7.0 \text{ sec}$ $P_r + 7.1 \text{ sec}$ $P_r + 7.1 \text{ sec}$ $P_r + 7.3 \text{ sec}$ $P_r + 7.3 \text{ sec}$ $P_r + 7.4 \text{ sec}$ $P_r + 7.5 \text{ sec}$ $P_r + 7.6 \text{ sec}$ $P_r + 7.8 \text{ sec}$ $P_r + 7.8 \text{ sec}$ $P_r + 7.9 \text{ sec}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S         (43 Bits           Control         Function           Bit         2°           21         2²           23         2 <sup>4</sup> 25         2 <sup>6</sup> 27         2 <sup>8</sup> Position         Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bit Time           Pr+8.0 sec           Pr+8.1 sec           Pr+8.2 sec           Pr+8.3 sec           Pr+8.4 sec           Pr+8.5 sec           Pr+8.5 sec           Pr+8.7 sec           Pr+8.8 sec           Pr+8.8 sec           Pr+8.9 sec | Control<br>Function<br>Bit           29           210           211           212           213           214           215           216           Index           Marker           Position               | Bit Time $P_r + 9.0 \sec$ $P_r + 9.1 \sec$ $P_r + 9.2 \sec$ $P_r + 9.3 \sec$ $P_r + 9.3 \sec$ $P_r + 9.5 \sec$ $P_r + 9.5 \sec$ $P_r + 9.6 \sec$ $P_r + 9.7 \sec$ $P_r + 9.8 \sec$ $P_r + 9.9 \sec$                                   |                         |                         |

<sup>1</sup>The bit time is the time of the bit leading edge and refers to the leading edge of Pr.

| Table 5-10. IRIG-E Control Bit Assignment For Year Information                    |                      |                      |                             |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|----------------------|----------------------|-----------------------------|--|--|--|--|--|--|
| Pos. ID                                                                           | Ctrl Bit No.         | Designation          | Explanation                 |  |  |  |  |  |  |
| P <sub>0</sub> to P <sub>5</sub> is BCD TOY in seconds, minutes, hours, and days. |                      |                      |                             |  |  |  |  |  |  |
| P49                                                                               |                      | P <sub>5</sub>       | Position Identifier #5      |  |  |  |  |  |  |
| P50                                                                               | Year 1               | Units of Year, BCD 1 | LSB 2 digits of year in BCD |  |  |  |  |  |  |
| P <sub>51</sub>                                                                   | Year 2               | Units of Year, BCD 2 | IBID                        |  |  |  |  |  |  |
| P <sub>52</sub>                                                                   | Year 3               | Units of Year, BCD 4 | IBID                        |  |  |  |  |  |  |
| P <sub>53</sub>                                                                   | Year 4               | Units of Year, BCD 8 | IBID                        |  |  |  |  |  |  |
| P <sub>54</sub>                                                                   |                      | Not Used             | Index Marker                |  |  |  |  |  |  |
| P55                                                                               | Year 5               | Tens of Year, BCD 10 | MSD 2 digits of year in BCD |  |  |  |  |  |  |
| P56                                                                               | Year 6               | Tens of Year, BCD 20 | IBID                        |  |  |  |  |  |  |
| P57                                                                               | Year 7               | Tens of Year, BCD 40 | IBID                        |  |  |  |  |  |  |
| P58                                                                               | Year 8               | Tens of Year, BCD 80 | IBID                        |  |  |  |  |  |  |
| P59                                                                               |                      | P <sub>6</sub>       | Position Identifier #6      |  |  |  |  |  |  |
| P <sub>60</sub>                                                                   | 1                    | Not Used             | Control Bit                 |  |  |  |  |  |  |
| P <sub>61</sub>                                                                   | 2                    | IBID                 | IBID                        |  |  |  |  |  |  |
| P <sub>62</sub>                                                                   | 3                    | IBID                 | IBID                        |  |  |  |  |  |  |
| P <sub>63</sub>                                                                   | 4                    | IBID                 | IBID                        |  |  |  |  |  |  |
| P <sub>64</sub>                                                                   | 5                    | IBID                 | IBID                        |  |  |  |  |  |  |
| P65                                                                               | 6                    | IBID                 | IBID                        |  |  |  |  |  |  |
| P <sub>66</sub>                                                                   | 7                    | IBID                 | IBID                        |  |  |  |  |  |  |
| P <sub>67</sub>                                                                   | 8                    | IBID                 | IBID                        |  |  |  |  |  |  |
| P <sub>68</sub>                                                                   | 9                    | IBID                 | IBID                        |  |  |  |  |  |  |
| P <sub>69</sub>                                                                   |                      | P <sub>7</sub>       | Position Identifier #7      |  |  |  |  |  |  |
| P <sub>70</sub>                                                                   | 10                   | Not Used             | Control Bits                |  |  |  |  |  |  |
| P <sub>71</sub>                                                                   | 11                   | IBID                 | IBID                        |  |  |  |  |  |  |
| P <sub>72</sub>                                                                   | 12                   | IBID                 | IBID                        |  |  |  |  |  |  |
| P <sub>73</sub>                                                                   | 13                   | IBID                 | IBID                        |  |  |  |  |  |  |
| P <sub>74</sub>                                                                   | 14                   | IBID                 | IBID                        |  |  |  |  |  |  |
| P <sub>75</sub>                                                                   | 15                   | IBID                 | IBID                        |  |  |  |  |  |  |
| P <sub>76</sub>                                                                   | 16                   | IBID                 | IBID                        |  |  |  |  |  |  |
| P <sub>77</sub>                                                                   | 17                   | IBID                 | IBID                        |  |  |  |  |  |  |
| P <sub>78</sub>                                                                   | 18                   | IBID                 | IBID                        |  |  |  |  |  |  |
| P79                                                                               |                      | P <sub>8</sub>       | Position Identifier #8      |  |  |  |  |  |  |
| $P_6$ to $P_8$ are                                                                | control functions.   |                      |                             |  |  |  |  |  |  |
| $P_8$ to $P_0$ is t                                                               | he TOD in straight l | pinary seconds.      |                             |  |  |  |  |  |  |

| Table 5-11. Parameters for Format E |                                   |  |  |  |  |  |
|-------------------------------------|-----------------------------------|--|--|--|--|--|
| Pulse Rates                         | Pulse Duration                    |  |  |  |  |  |
| Bit rate: 10 pps                    | Index marker: 20 ms               |  |  |  |  |  |
| Position identifier: 1 pps          | Binary 0 or un-encoded bit: 20 ms |  |  |  |  |  |
| Reference mark: 6 ppm               | Binary 1 or coded bit: 50 ms      |  |  |  |  |  |
|                                     | Position identifier: 80 ms        |  |  |  |  |  |
|                                     | Reference bit: 80 ms              |  |  |  |  |  |
| Resolution                          | Mark-To-Space Ratio               |  |  |  |  |  |
| 0.1 second dc level                 | Nominal value of 10:3             |  |  |  |  |  |
| 10 ms modulated 100 Hz carrier      | Range of 3:1 to 6:1               |  |  |  |  |  |
| 1 ms modulated 1 kHz carrier        |                                   |  |  |  |  |  |

#### 5.6 Format G

The following is a detailed description of IRIG time code format G.

- The beginning of each 0.01-second time frame is identified by two consecutive 80-µs bits, P<sub>0</sub> and P<sub>r</sub>. The leading edge of P<sub>r</sub> is the on-time reference point for the succeeding time code word. Position identifiers P<sub>0</sub> and P<sub>1</sub> through P<sub>9</sub> each use 0.1 ms of the time frame, one full index count duration. Position identifiers occur every 0.1 ms before the leading edge of each succeeding tenth index count (see Figure 5-5).
- The time code words and the CFs presented during the time frame are pulse-width coded. The time code bit rate is 10 kpps. The time code reference bit's leading edge is the on-time reference point for all bits and is the index count reference point. The binary 0 and index markers have durations of 20  $\mu$ s and the binary 1 has duration of 50  $\mu$ s.
- The BCD TOY code word consists of 38 bits beginning at index count 1. The subword bits occur between position identifiers P<sub>0</sub> and P<sub>6</sub>: 7 for seconds, 7 for minutes, 6 for hours, 10 for days, 4 for tenths of seconds, and 4 for hundredths of seconds. There are 8 bits for year information occurring between position identifiers P<sub>6</sub> and P<sub>7</sub> to complete the BCD time code word. An index marker occurs between the decimal digits in each subword, except for fractional seconds, to provide visual separation. The LSB occurs first, except for the fractional second information that follows the day-of-year information. The code recycles yearly. Each bit position is identified in <u>Table 5-12</u>.
- There are 27 control bits occurring between position identifiers P<sub>7</sub> and P<sub>0</sub>. Any CF bit or combination of bits can be programmed to read a binary 1 or 0 during any specified number of time frames. Each control bit position is identified in <u>Table 5-12</u>.
- Control bit assignments, functions, and parameters for time code format G are shown on the following pages.

Table 5-13: IRIG-G control bit assignment for year information. Table 5-14: Parameters for format G.



Figure 5-5. Format G: BCD Time-of-Year in Days, Hours, Minutes, Seconds, and Year and Fractions-of-Seconds, and Control Bits

| Table 5-12. Format G, Signal G001             |                                                                                                                  |             |                 |                    |                          |          |                        |                |                                   |                        |  |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------|-----------------|--------------------|--------------------------|----------|------------------------|----------------|-----------------------------------|------------------------|--|
| BCD Time-of-Year Code (38 Digits)             |                                                                                                                  |             |                 |                    |                          |          |                        |                |                                   |                        |  |
| Seconds Subword Minutes Subword Hours Subword |                                                                                                                  |             |                 |                    |                          |          |                        |                |                                   |                        |  |
| BCD Code Digit                                | Subword Digit Wt                                                                                                 | Bit Tin     | ne <sup>1</sup> | BCD Code Digit     | Subword Dig              | git Wt   | Bit Time               | BCD Code       | Subword Digit Wt                  | Bit Time               |  |
| No.                                           | Seconds                                                                                                          |             |                 | No.                | Minute                   | \$       |                        | Digit No.      | Hours                             |                        |  |
| Refer                                         | ence Bit                                                                                                         | Pr          |                 | 8                  | 1                        |          | $P_r + 1.0 ms$         | 15             | 1                                 | $P_r + 2.0 \text{ ms}$ |  |
| 1                                             | 1                                                                                                                | $P_r + 0.1$ | ms              | 9                  | 2                        |          | $P_r + 1.1 ms$         | 16             | 2                                 | Pr+2.1 ms              |  |
| 2                                             | 2                                                                                                                | $P_r + 0.2$ | ms              | 10                 | 4                        |          | $P_r + 1.2 ms$         | 17             | 4                                 | $P_r + 2.2 ms$         |  |
| 3                                             | 4                                                                                                                | $P_r + 0.3$ | ms              | 11                 | 8                        |          | P <sub>r</sub> +1.3 ms | 18             | 8                                 | $P_r + 2.3 ms$         |  |
| 4                                             | 8                                                                                                                | $P_r + 0.4$ | ms              | Ind                | ex Bit                   |          | $P_r + 1.4 ms$         |                | Index Bit                         | $P_r + 2.4 \text{ ms}$ |  |
| Ind                                           | ex Bit                                                                                                           | $P_r + 0.5$ | ms              | 12                 | 10                       |          | $P_r + 1.5 ms$         | 19             | 10                                | $P_r + 2.5 ms$         |  |
| 5                                             | 10                                                                                                               | $P_r + 0.6$ | ms              | 13                 | 20                       |          | P <sub>r</sub> +1.6 ms | 20             | 20                                | Pr+2.6 ms              |  |
| 6                                             | 20                                                                                                               | $P_r + 0.7$ | ms              | 14                 | 40                       |          | P <sub>r</sub> +1.7 ms |                | Index Bit                         | Pr+2.7 ms              |  |
| 7                                             | 40                                                                                                               | $P_r + 0.8$ | ms              | Ind                | ex Bit                   |          | Pr+1.8 ms              |                | Index Bit                         | Pr+2.8 ms              |  |
| Position                                      | Ident. (P1)                                                                                                      | $P_r + 0.9$ | ms              | Position           | Ident. (P <sub>2</sub> ) |          | P <sub>r</sub> +1.9 ms | Posi           | tion Ident. (P <sub>3</sub> )     | Pr+2.9 ms              |  |
|                                               | Days                                                                                                             | And Frac    | ctional         | Second Subword     |                          |          |                        |                | Fractional Second Subword         |                        |  |
| BCD Code Digit                                | Subword Digit Wt                                                                                                 | Bit Tiı     | ne              | BCD Code           | Subword Dig              | it Wt    | Bit Time               | BCD Code       | Subword Digit Wt                  | Bit Time               |  |
| No.                                           | Days                                                                                                             |             |                 | Digit No.          | Days                     |          |                        | Digit No.      | Seconds                           |                        |  |
| 21                                            | 1                                                                                                                | $P_r + 3.0$ | ms              | 29                 | 100                      |          | $P_r + 4.0 \text{ ms}$ | 35             | 0.01                              | Pr+ 5.0 ms             |  |
| 22                                            | 2                                                                                                                | $P_r + 3.1$ | ms              | 30                 | 200                      |          | $P_r + 4.1 ms$         | 36             | 0.02                              | $P_r + 5.1 \text{ ms}$ |  |
| 23                                            | 4                                                                                                                | $P_r + 3.2$ | ms              | Ind                | lex Bit                  |          | $P_r + 4.2 ms$         | 37             | 0.04                              | $P_r + 5.2 ms$         |  |
| 24                                            | 8                                                                                                                | $P_r + 3.3$ | ms              | Ind                | ex Bit                   |          | $P_r + 4.3 ms$         | 38             | 0.08                              | P <sub>r</sub> +5.3 ms |  |
| Ind                                           | ex Bit                                                                                                           | $P_r + 3.4$ | ms              | Ind                | ex Bit                   |          | $P_r + 4.4 ms$         |                | Index Bit                         |                        |  |
| 25                                            | 10                                                                                                               | $P_r + 3.5$ | ms              | 31                 | 0.1                      |          | $P_r + 4.5 ms$         |                | $P_r + 5.5 ms$                    |                        |  |
| 26                                            | 20                                                                                                               | $P_r + 3.6$ | ms              | 32                 | 0.2                      |          | $P_r + 4.6 \text{ ms}$ |                | Index Bit                         | $P_r + 5.6 \text{ ms}$ |  |
| 27                                            | 40                                                                                                               | $P_r + 3.7$ | ms              | 33                 | 0.4                      |          | $P_r + 4.7 ms$         |                | Index Bit                         | $P_r + 5.7 ms$         |  |
| 28                                            | 80                                                                                                               | $P_r + 3.8$ | ms              | 34                 | 0.8                      |          | $P_r + 4.8 ms$         |                | Index Bit                         | $P_r + 5.8 \text{ ms}$ |  |
| Position                                      | Ident. (P4)                                                                                                      | $P_r + 3.9$ | ms              | Position           | Ident. (P5)              |          | $P_r + 4.9 ms$         | Posi           | tion Ident. (P <sub>6</sub> )     | $P_r + 5.9 ms$         |  |
|                                               |                                                                                                                  |             |                 | Year and           | l Control Func           | tions (3 | 6 Bits)                |                |                                   |                        |  |
| Year Function Bit                             | Bit Time                                                                                                         |             | Con             | trol Function Bit  | Bit Time                 | Contr    | ol Function Bit        | Bit Time       | Control Function Bit              | Bit Time               |  |
| 1                                             | P <sub>r</sub> +6.0 ms Units of Ye                                                                               | ar 01       |                 | 1                  | $P_r + 7.0 \text{ ms}$   |          | 10                     | $P_r + 8.0 ms$ | 19                                | $P_r + 9.0 \text{ ms}$ |  |
| 2                                             | Units of Year 02                                                                                                 |             |                 | 2                  | $P_r + 7.1 \text{ ms}$   |          | 11                     | $P_r + 8.1 ms$ | 20                                | $P_r + 9.1 \text{ ms}$ |  |
| 3                                             | Units of Year 04                                                                                                 |             |                 | 3                  | $P_r + 7.2 ms$           |          | 12                     | $P_r + 8.2 ms$ | 21                                | Pr+9.2 ms              |  |
| 4                                             | Units of Year 08                                                                                                 |             |                 | 4                  | $P_r + 7.3 ms$           |          | 13                     | $P_r + 8.3 ms$ | 22                                | P <sub>r</sub> +9.3 ms |  |
| Index Mark                                    | $P_r + 6.4 ms$                                                                                                   |             |                 | 5                  | $P_r + 7.4 \text{ ms}$   |          | 14                     | $P_r + 8.4 ms$ | 23                                | Pr+9.4 ms              |  |
| 6                                             | Tens of Year 10                                                                                                  |             |                 | 6                  | $P_r + 7.5 ms$           |          | 15                     | $P_r + 8.5 ms$ | 24                                | Pr+9.5 ms              |  |
| 7                                             | Tens of Year 20                                                                                                  |             |                 | 7                  | $P_r + 7.6 \text{ ms}$   |          | 16                     | $P_r + 8.6 ms$ | 25                                | $P_r$ +9.6 ms          |  |
| 8                                             | Tens of Year 40                                                                                                  |             |                 | 8                  | $P_r + 7.7 ms$           |          | 17                     | $P_r + 8.7 ms$ | 26                                | $P_r + 9.7 ms$         |  |
| 9                                             | Tens of Year 80                                                                                                  |             |                 | 9                  | $P_r + 7.8 ms$           |          | 18                     | $P_r + 8.8 ms$ | 27                                | $P_r + 9.8 ms$         |  |
| Position Ident. (P7)                          | $P_r + 6.9 ms$                                                                                                   |             | Pos             | sition Ident. (P8) | $P_r + 7.9 ms$           | Posi     | tion Ident. (P9)       | $P_r + 8.9 ms$ | Position Ident. (P <sub>0</sub> ) | $P_r + 9.9 ms$         |  |
| 'The bit time is the time                     | <sup>1</sup> The bit time is the time of the bit leading edge and refers to the leading edge of P <sub>r</sub> . |             |                 |                    |                          |          |                        |                |                                   |                        |  |

| Table 5-13. IRIG-G Control Bit Assignment for Year Information |                    |                             |                             |  |  |  |  |  |  |
|----------------------------------------------------------------|--------------------|-----------------------------|-----------------------------|--|--|--|--|--|--|
| Pos. ID                                                        | Ctrl Bit No        | Designation                 | Explanation                 |  |  |  |  |  |  |
| $P_0$ to $P_6$ is BC                                           | CD TOY in seconds. | , minutes, hours, days, and | fraction of seconds.        |  |  |  |  |  |  |
| P59                                                            | -                  | P <sub>6</sub>              | Position Identifier #6      |  |  |  |  |  |  |
| P <sub>60</sub>                                                | Year 1             | Units Year, BCD 1           | LSB 2 digits of year in BCD |  |  |  |  |  |  |
| P <sub>61</sub>                                                | Year 2             | Units Year, BCD 2           | IBID                        |  |  |  |  |  |  |
| P <sub>62</sub>                                                | Year 3             | Units Year, BCD 4           | IBID                        |  |  |  |  |  |  |
| P <sub>63</sub>                                                | Year4              | Units Year, BCD 8           | IBID                        |  |  |  |  |  |  |
| P <sub>64</sub>                                                | Index Marker       | Units Not Used              | Unassigned                  |  |  |  |  |  |  |
| P <sub>65</sub>                                                | Year 5             | Units Year, BCD 10          | MSB 2 digits of year in BCD |  |  |  |  |  |  |
| P <sub>66</sub>                                                | Year 6             | Units Year, BCD 20          | IBID                        |  |  |  |  |  |  |
| P <sub>67</sub>                                                | Year 7             | Units Year, BCD 40          | IBID                        |  |  |  |  |  |  |
| P <sub>68</sub>                                                | Year 8             | Units Year, BCD 80          | IBID                        |  |  |  |  |  |  |
| P <sub>69</sub>                                                |                    | P <sub>7</sub>              | Position Identifier #7      |  |  |  |  |  |  |
| P <sub>70</sub>                                                | 1                  | Not Used                    | Control Bit                 |  |  |  |  |  |  |
| P <sub>71</sub>                                                | 2                  | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>72</sub>                                                | 3                  | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>73</sub>                                                | 4                  | IBID                        | IBID                        |  |  |  |  |  |  |
| <b>P</b> <sub>74</sub>                                         | 5                  | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>75</sub>                                                | 6                  | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>76</sub>                                                | 7                  | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>77</sub>                                                | 8                  | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>78</sub>                                                | 9                  | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>79</sub>                                                |                    | P <sub>8</sub>              | Position Identifier #8      |  |  |  |  |  |  |
| P <sub>80</sub>                                                | 10                 | Not Used                    | Control Bit                 |  |  |  |  |  |  |
| P <sub>81</sub>                                                | 11                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>82</sub>                                                | 12                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>83</sub>                                                | 13                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>84</sub>                                                | 14                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>85</sub>                                                | 15                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>86</sub>                                                | 16                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>87</sub>                                                | 17                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>88</sub>                                                | 18                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>89</sub>                                                |                    | P9                          | Position Identifier #9      |  |  |  |  |  |  |
| P <sub>90</sub>                                                | 19                 | Not Used                    | Control Bit                 |  |  |  |  |  |  |
| P <sub>91</sub>                                                | 20                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>92</sub>                                                | 21                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>93</sub>                                                | 22                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>94</sub>                                                | 23                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>95</sub>                                                | 24                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>96</sub>                                                | 25                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>97</sub>                                                | 26                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P <sub>98</sub>                                                | 27                 | IBID                        | IBID                        |  |  |  |  |  |  |
| P99                                                            |                    | P <sub>10</sub>             | Position Identifier #10     |  |  |  |  |  |  |

 $P_8$  to  $P_0$  are control functions.

Note: The bit time is the time of the bit leading edge and refers to the leading edge of P<sub>r</sub>

| Table 5-14. Parameters For Format G |                                   |  |  |
|-------------------------------------|-----------------------------------|--|--|
| Pulse Rates                         | Pulse Duration                    |  |  |
| Bit rate: 10 kpps                   | Index marker: 20 µs               |  |  |
| Position identifier: 1 kpps         | Binary 0 or un-encoded bit: 20 µs |  |  |
| Reference marker: 100 pps           | Binary 1 or coded bit: 50 µs      |  |  |
|                                     | Position identifiers: 80 µs       |  |  |
|                                     | Reference bit: 80 µs              |  |  |
| Resolution                          | Mark-To-Space Ratio               |  |  |
| 0.1 ms dc level                     | Nominal value of 10:3             |  |  |
| 10 µs modulated 100 kHz carrier     | Range of 3:1 to 6:1               |  |  |

#### 5.7 Format H

The following is a detailed description of IRIG time code format H.

- The beginning of each 1-minute time frame is identified by two consecutive 0.8-second bits,  $P_0$  and  $P_r$ . The leading edge of  $P_r$  is the on-time reference point for the succeeding time code words. Position identifiers  $P_0$  and  $P_1$  through  $P_5$  each use 1 second of the time frame, one full index count duration. Position identifiers occur every 1 second before the leading edge of each succeeding tenth index count (see Figure 5-6).
- The time code word and the CFs presented during the time frame are pulse-width coded. The binary 0 and the index markers each have duration of 0.2 seconds and a binary 1 has duration of 0.5 seconds. The leading edge is the 1-pps on-time reference point for all bits.
- The BCD TOY consists of 23 bits beginning at index count 10. The subword bits occur between position identifiers P<sub>1</sub> and P<sub>5</sub>: 7 for minutes, 6 for hours, and 10 for days to complete the time code word. An index marker occurs between the decimal digits in each subword to provide separation for visual resolution. The LSB occurs first. The code recycles yearly. Each bit position is identified in <u>Table 5-15</u>.
- There are 9 CFs occurring between position identifiers P<sub>5</sub> and P<sub>0</sub>. Any CF bit or combination of bits can be programmed to read a binary 1 or 0 during any specified number of time frames.
- Details of the IRIG format H parameters are shown at <u>Table 5-16</u>.



Figure 5-6. Format H: BCD Time-of-Year in Days, Hours, Minutes, and Control Bits

| Table 5-15. Format H, Signal H001                                                                                |                                                              |                        |                        |                                   |                        |                                   |                |                        |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------|------------------------|-----------------------------------|------------------------|-----------------------------------|----------------|------------------------|
| BCD Time-of-Year Code (23 Digits)                                                                                |                                                              |                        |                        |                                   |                        |                                   |                |                        |
| Seconds Subword Minutes Subword                                                                                  |                                                              |                        | d                      | Hours Subword                     |                        |                                   |                |                        |
| BCD Code                                                                                                         | Subword Digit                                                | Bit Time <sup>1</sup>  | BCD Code               | Subword Digit                     | Bit Time               | BCD Code                          | Subword Digit  | Bit Time               |
| Digit No.                                                                                                        | Wt Seconds                                                   |                        | Digit No.              | Wt Minutes                        |                        | Digit No.                         | Wt Hours       |                        |
| Refe                                                                                                             | rence Bit                                                    | Pr                     | 1                      | 1                                 | $P_r + 10 \text{ sec}$ | 8                                 | 1              | $P_r + 20 \text{ sec}$ |
| Inde                                                                                                             | x Marker                                                     | $P_r + 1$ sec          | 2                      | 2                                 | $P_r + 11$ sec         | 9                                 | 2              | $P_r + 21$ sec         |
| Inde                                                                                                             | x Marker                                                     | $P_r + 2 sec$          | 3                      | 4                                 | $P_r + 12 \text{ sec}$ | 10                                | 4              | $P_r + 22 \text{ sec}$ |
| Inde                                                                                                             | x Marker                                                     | $P_r + 3 sec$          | 4                      | 8                                 | $P_r + 13 \text{ sec}$ | 11                                | 8              | $P_r + 23 sec$         |
| Inde                                                                                                             | x Marker                                                     | $P_r + 4 sec$          | Index                  | x Marker                          | $P_r + 14 \text{ sec}$ | Index                             | Marker         | $P_r + 24$ sec         |
| Inde                                                                                                             | x Marker                                                     | $P_r + 5 sec$          | 5                      | 10                                | $P_r + 15 \text{ sec}$ | 12                                | 10             | $P_r + 25 \text{ sec}$ |
| Inde                                                                                                             | x Marker                                                     | $P_r + 6 sec$          | 6                      | 20                                | $P_r + 16 \text{ sec}$ | 13                                | 20             | $P_r + 26 \text{ sec}$ |
| Inde                                                                                                             | x Marker                                                     | $P_r + 7 sec$          | 7                      | 40                                | $P_r + 17 \text{ sec}$ | Index Marker P <sub>r</sub>       |                | $P_r + 27 \text{ sec}$ |
| Inde                                                                                                             | Index Marker $P_r + 8 \text{ sec}$ Index Marker              |                        | x Marker               | $P_r + 18 \text{ sec}$            | Index Marker           |                                   | $P_r + 28 sec$ |                        |
| Position                                                                                                         | Position Ident. $(P_1)$ $P_r + 9$ secPosition Ident. $(P_2)$ |                        | $P_r + 19$ sec         | Position Ident. (P <sub>3</sub> ) |                        | $P_r + 29 \text{ sec}$            |                |                        |
|                                                                                                                  |                                                              | Days Su                | bword                  |                                   |                        | <b>Control Functions (9 Bits)</b> |                |                        |
| BCD Code                                                                                                         | Subword Digit                                                | Bit Time               | BCD Code               | Subword Digit                     | Bit Time               | Control I                         | Function Bit   | Bit Time               |
| Digit No.                                                                                                        | Wt Days                                                      |                        | Digit No.              | Wt Days                           |                        |                                   |                |                        |
| 14                                                                                                               | 1                                                            | $P_r + 30 \text{ sec}$ | 22                     | 100                               | $P_r + 40 \text{ sec}$ |                                   | 1              | $P_r + 50 \text{ sec}$ |
| 15                                                                                                               | 2                                                            | $P_r + 31$ sec         | 33                     | 200                               | $P_r + 41 \text{ sec}$ | 2                                 |                | $P_r + 51$ sec         |
| 16                                                                                                               | 4                                                            | $P_r + 32 \text{ sec}$ | Index Marker           |                                   | $P_r + 42 \text{ sec}$ | 3                                 |                | $P_r + 52 \text{ sec}$ |
| 17                                                                                                               | 8                                                            | $P_r + 33 \text{ sec}$ | Index Marker           |                                   | $P_r + 43 \text{ sec}$ | 4                                 |                | $P_r + 53 \text{ sec}$ |
| Inde                                                                                                             | x Marker                                                     | $P_r + 34 \text{ sec}$ | Index Marker           |                                   | $P_r + 44 \text{ sec}$ | 5                                 |                | $P_r + 54 \text{ sec}$ |
| 18                                                                                                               | 10                                                           | $P_r + 35 \text{ sec}$ | Index Marker           |                                   | $P_r + 45 \text{ sec}$ | 6                                 |                | $P_r + 55 \text{ sec}$ |
| 19                                                                                                               | 20                                                           | $P_r + 36 \text{ sec}$ | Index Marker           |                                   | $P_r + 46 \text{ sec}$ | 7                                 |                | $P_r + 56 \text{ sec}$ |
| 20                                                                                                               | 40                                                           | $P_r + 37 \text{ sec}$ | Index Marker           |                                   | $P_r + 47 \text{ sec}$ | 8                                 |                | $P_r + 57 \text{ sec}$ |
| 21                                                                                                               | 80                                                           | $P_r + 38 \text{ sec}$ | Index Marker           |                                   | $P_r + 48 \text{ sec}$ | 9                                 |                | $P_r + 58 \text{ sec}$ |
| Position Ident. (P4) $P_r + 39$ secPosition Ident. (P5) $P_r + 49$ secPosition Ident. (P0) $P_r + 49$            |                                                              |                        | $P_r + 59 \text{ sec}$ |                                   |                        |                                   |                |                        |
| <sup>1</sup> The bit time is the time of the bit leading edge and refers to the leading edge of P <sub>r</sub> . |                                                              |                        |                        |                                   |                        |                                   |                |                        |

| Table 5-16. Parameters for Format H |                                   |  |  |
|-------------------------------------|-----------------------------------|--|--|
| Pulse Rates                         | Pulse Duration                    |  |  |
| Bit rate: 1 pps                     | Index marker: 0.2 s               |  |  |
| Position identifier: 6 ppm          | Binary 0 or un-encoded bit: 0.2 s |  |  |
| Reference marker: 1 ppm             | Binary 1 or coded bit: 0.5 s      |  |  |
|                                     | Position identifiers: 0.8 s       |  |  |
|                                     | Reference bit: 0.8 s              |  |  |
| Resolution                          | Mark-To-Space Ratio               |  |  |
| 1 second dc level                   | Nominal value of 10:3             |  |  |
| 10 ms modulated 100 Hz carrier      | Range of 3:1 to 6:1               |  |  |
| 1 ms modulated 1 kHz carrier        |                                   |  |  |

## Appendix A

## Leap Year/Leap Second Conventions

#### A.1 Leap Year Convention

The USNO Astronomical Applications Department defines the leap year according to the Gregorian calendar, which was instituted by Pope Gregory VIII in 1582 to keep the year in a cycle with the seasons. The average Gregorian calendar year, technically known as the Tropical Year, is approximately 365.2425 days in length and it will take about 3,326 years before the Gregorian calendar is as much as one day out of step with the seasons.

According to the Gregorian calendar, which is the civil calendar in use today, years that are evenly divisible by 4 are leap years with the exception of century years that are not evenly divisible by 400. This means that years 1700, 1800, 1900, 2100, 2200, and 2500 are NOT leap years and that years 1600, 2000, and 2400 ARE leap years.

Additional information can be found at the following USNO web sites.

- <u>http://timeanddate.com/date/leapyear.html</u>
- <u>http://aa.usno.navy.mil/faq/docs/leap\_years.html</u>

### A.2 Leap Second Convention

Civil time is occasionally adjusted by one-second increments to insure that the difference between a uniform time-scale defined by International Atomic Time (TAI) does not differ from the Earth's rotational time by more than 0.9 seconds. Consequently, UTC, also an atomic time, was established in 1972 and is adjusted for the Earth's rotation and forms the basis for civil time.

There have been 35 leap seconds added to UTC to keep it in synchronization with the rotation of the earth. In 1980, when the Global Positioning System (GPS) came into being, it was initially synchronized to UTC; however, GPS time does not add or subtract leap seconds, and as of this writing, GPS time is 16 seconds ahead of UTC. The relationship between TAI and UTC is given by a simple accumulation of leap seconds occurring approximately once per year. If required, time changes are made on December 31 and on June 30 at 2400 hours.

At any instant (i),  $T_i = TAI$  time,

$$\begin{split} U_i &= UTC \text{ time expressed in seconds, and} \\ T_i &= U_i + L_i \end{split}$$

where  $L_i$  is the accumulated leap second additions between the epoch and the instant (i).

The USNO maintains a history of accumulated leap seconds on one of their web sites. The site URL is: <u>ftp://maia.usno.navy.mil/ser7/tai-utc.dat</u>, which provides a list of TAI minus UTC from 1961 to 1999. As of the publication date of this document, the last leap second occurred in June 2012. Additional information can be obtained from the USNO's Earth Orientation Department at the following web sites.

- http://maia.usno.navy.mil/eo/leapsec.html
- <u>http://tycho.usno.navy.mil/leapsec.990505.html</u>

# Appendix B

# **BCD Count/Binary Count**

Refer to <u>Table B-1</u> for the BCD count data and <u>Table B-2</u> for binary count data.

| Table B-1.BCD Count (8n 4n 2n 1n) |                      |          |  |  |
|-----------------------------------|----------------------|----------|--|--|
| Decimal Number                    | n                    | BCD Bits |  |  |
| 1                                 | 1                    | 1        |  |  |
| 5                                 | 1                    | 3        |  |  |
| 10                                | 10                   | 5        |  |  |
| 15                                | 10                   | 5        |  |  |
| 150                               | 100                  | 9        |  |  |
| 1500                              | $1x10^{3}$           | 13       |  |  |
| 15,000                            | $10x10^{3}$          | 17       |  |  |
| 150,000                           | $100 \times 10^{3}$  | 21       |  |  |
| 1,500,000                         | $1 \times 10^{6}$    | 25       |  |  |
| 15,000,000                        | $10x10^{6}$          | 29       |  |  |
| 150,000,000                       | $100 \times 10^{6}$  | 33       |  |  |
| 1,500,000,000                     | $1 \times 10^{6}$    | 37       |  |  |
| 15,000,000,000                    | 10x10 <sup>9</sup>   | 41       |  |  |
| 150,000,000,000                   | $100 \times 10^9$    | 45       |  |  |
| 1,500,000,000,000                 | $1 \times 10^{12}$   | 49       |  |  |
| 15,000,000,000,000                | $10x10^{12}$         | 53       |  |  |
| 150,000,000,000,000               | $100 \times 10^{12}$ | 57       |  |  |

| Table B-2.   Binary Count (2n) |                      |                       |                      |  |
|--------------------------------|----------------------|-----------------------|----------------------|--|
| Decimal Number                 | <b>Binary Number</b> | <b>Decimal Number</b> | <b>Binary Number</b> |  |
| Ν                              | 2 <sup>n</sup>       | n                     | 2 <sup>n</sup>       |  |
| 0                              | 1                    |                       |                      |  |
| 1                              | 2                    | 26                    | 67,108,864           |  |
| 2                              | 4                    | 27                    | 134,217,728          |  |
| 3                              | 8                    | 28                    | 268,435,456          |  |
| 4                              | 16                   | 29                    | 536,870,912          |  |
| 5                              | 32                   | 30                    | 1,073,741,824        |  |
| 6                              | 64                   | 31                    | 2,147,483,648        |  |
| 7                              | 128                  | 32                    | 4,294,967,296        |  |
| 8                              | 256                  | 33                    | 8,589,934,592        |  |
| 9                              | 512                  | 34                    | 17,179,869,184       |  |
| 10                             | 1024                 | 35                    | 34,359,738,368       |  |
| 11                             | 2048                 | 36                    | 68,719,476,736       |  |
| 12                             | 4096                 | 37                    | 137,438,953,472      |  |
| 13                             | 8192                 | 38                    | 274,877,906,944      |  |
| 14                             | 16,384               | 39                    | 549,755,813,888      |  |

| Table B-2.   Binary Count (2n) |                      |                |                       |  |
|--------------------------------|----------------------|----------------|-----------------------|--|
| Decimal Number                 | <b>Binary Number</b> | Decimal Number | <b>Binary Number</b>  |  |
| 15                             | 32,768               | 40             | 1,099,511,627,776     |  |
| 16                             | 65,536               | 41             | 2,199,023,255,552     |  |
| 17                             | 131,072              | 42             | 4,398,046,511,104     |  |
| 18                             | 262,144              | 43             | 8,796,093,022,208     |  |
| 19                             | 524,288              | 44             | 17,592,186,044,416    |  |
| 20                             | 1,048,576            | 45             | 35,184,372,088,832    |  |
| 21                             | 2,097,152            | 46             | 70,368,744,177,664    |  |
| 22                             | 4,194,304            | 47             | 140,737,488,355,328   |  |
| 23                             | 8,388,608            | 48             | 281,474,976,710,656   |  |
| 24                             | 16,777,216           | 49             | 562,949,953,421,312   |  |
| 25                             | 33,554,432           | 50             | 1,125,899,906,842,620 |  |

# Appendix C

# Hardware Design Considerations

| Table C-1. Time Code Generator Hardware Minimum DesignConsiderations |                                                                          |                                          |                                     |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------|-------------------------------------|--|
| Code                                                                 | Level (dc) Pulse Rise Time<br>Between the 10 and 90%<br>Amplitude Points | Jitter Modulated at<br>Carrier Frequency | Jitter Level (dc)<br>Pulse-to-Pulse |  |
| Format A                                                             | ≤200 ns                                                                  | $\leq 1\%$                               | ≤100 ns                             |  |
| Format B                                                             | $\leq 1 \ \mu s$                                                         | $\leq 1\%$                               | ≤200 ns                             |  |
| Format D                                                             | $\leq 1 \ \mu s$                                                         | $\leq 1\%$                               | ≤200 ns                             |  |
| Format E                                                             | $\leq 1 \ \mu s$                                                         | $\leq 1\%$                               | ≤200 ns                             |  |
| Format G                                                             | ≤20 ns                                                                   | $\leq 1\%$                               | ≤20 ns                              |  |
| Format H                                                             | $\leq 1 \ \mu s$                                                         | $\leq 1\%$                               | ≤200 ns                             |  |

## Appendix D

### Glossary

#### D.1 Definitions of Terms And Usage

- Accuracy Systematic uncertainty (deviation) of a measured value with respect to a standard reference.
- Binary Coded Decimal (BCD) A numbering system that uses decimal digits encoded in a binary representation (1n 2n 4n 8n) where n=1, 10, 100, 1 k, 10 k...N (see appendix B).
- Binary numbering system (Straight Binary) A numbering system that has two as its base and uses two symbols, usually denoted by 0 and 1 (see appendix B).

Frame rate - The repetition rate of the time code.

- Global Positioning System (GPS) a U.S. owned utility that provides users with positioning, navigation, and timing services.
- IBID Latin, short for ibidem, meaning "in the same place."
- Index count The number that identifies a specific bit position with respect to a reference marker.

Index markers - Uuencoded, periodic, interpolating bits in the time code.

Instrumentation Timing - A parameter serving as the fundamental variable in terms of which data may be correlated.

Leap second - See appendix A.

Leap year - See appendix A.

On-time - The state of any bit being coincident with a standard time reference (USNO or National Bureau of Standards or other national laboratory).

On-time reference marker - The leading edge of the reference bit  $P_r$  of each time frame.

Position identifier - A particular bit denoting the position of a portion or all of a time code.

Precision - An agreement of measurement with respect to a defined value.

Reference marker - A periodic combination of bits that establishes that instant of time defined by the time code word.

- Resolution (of a time code) The smallest increment of time or least significant bit that can be defined by a time code word or subword.
- Second Basic unit of time or time interval in the International System of Units (SI).
- Subword A subdivision of the time code word containing only one type of time unit, for example, days, hours, seconds, or milliseconds.
- Time Signifies epoch, i.e., the designation of an instant of time on a selected time scale such as astronomical, atomic, or UTC.
- Time code A system of symbols used for identifying specific instants of time.
- Time code word A specific set of time code symbols that identifies one instant of time. A time code word may be subdivided into subwords.
- Time frame The time interval between consecutive reference markers that contains all the bits that determine the time code format.
- Time interval The duration between two instants read on the same time scale, usually expressed in seconds or in a multiple or sub multiple of a second.
- Time reference The basic repetition rate chosen as the common time reference for all instrumentation timing (usually 1 pps).
- Time  $T_0$  The initial time  $0^h 0^m 0^s$ , January 1, or the beginning of an epoch.

# Appendix E

## Citations

Range Commanders Council. IRIG Standard Parallel Binary and Parallel Binary Coded Decimal Time Code Formats. RCC 205-87. August 1987. May be superseded by update. Retrieved on 29 July 2015. Available to RCC members with Private Page access at <u>https://wsdmext.wsmr.army.mil/site/rccpri/Publications/205-</u> <u>87 IRIG Standard Parallel Binary and Parallel Binary Coded Decimal Time Code</u> Formats/.

# \* \* \* END OF DOCUMENT \* \* \*