APPENDIX S

Space-Time Coding for Telemetry Systems

Acronyms	S	-iii
1.0	Code Description	S-1
2.0	Modulation	S-3
3.0	Resources	S-4
References		S-5

Table of Figures

Figure S-1.	Offset QPSK IRIG 106 Symbol-to-Phase Mapping Convention	S-1
Figure S-2.	Notional Diagram Illustrating the Periodic Insertion of 128 Pilot Bits	
-	Every 3200 Alamouti-Encoded Bits	S-3
Figure S-3.	A Notional Block Diagram of the Space-Time Code Transmitter	S-4

This page intentionally left blank.

Acronyms

SOQPSKshaped offset quadrature phase shift keyingSTCspace-time code

This page intentionally left blank.

APPENDIX S

Space-Time Coding for Telemetry Systems

1.0 Code Description

The space-time code (STC) used in this standard is based on the Alamouti STC¹ and applied only to shaped offset quadrature phase shift keying (SOQPSK)-TG or any of its fully interoperable variants. The Alamouti STC may be described in terms of the offset QPSK IRIG 106 symbol-to-phase mapping convention illustrated in Figure M-2 in <u>Appendix M</u>. Figure M-2 is reproduced here as <u>Figure S-1</u>.

Figure S-1. Offset QPSK IRIG 106 Symbol-to-Phase Mapping Convention

The starting point is the normalized analog values corresponding to each of the offset QPSK symbols. Let $[a_n, b_n]$ with $a_n = \pm 1$, $b_n = \pm 1$ be the analog value of the *n*-th symbol. Suppose the bit sequence defines the sequence of symbols

 $[a_0, b_0], [a_1, b_1], [a_2, b_2], [a_3, b_3], \dots, [a_{2k}, b_{2k}], [a_{2k+1}, b_{2k+1}], \dots$

The Alamouti STC organizes the symbols into blocks of two symbols, starting with the even-indexed blocks as shown. The Alamouti STC assigns the *k*-th block of symbols

 $[a_{2k}, b_{2k}], [a_{2k+1}, b_{2k+1}]$

to antenna 0 and antenna 1 over two consecutive symbol times as shown below.

antenna	symbol time 2k	symbol time $2k+1$
0	$[a_{2k}, b_{2k}]$	$[-a_{2k+1}, b_{2k+1}]$
1	$[a_{2k+1}, b_{2k+1}]$	$[a_{2k}, -b_{2k}]$

¹ S. Alamouti. "A Simple Transmit diversity Technique for Wireless Communications." *IEEE Journal on Selected Areas in Communications*, vol. 16, no. 8, pp. 1451-1458, October 1998.

Using the bit (Boolean) assignments shown in <u>Figure S-1</u>, the Alamouti encoder can be restated in terms of the input bits as follows. Let the sequence of input bits be

 $b_0 b_1 b_2 b_3 | b_4 b_5 b_6 b_7 | \dots | b_{4k} b_{4k+1} b_{4k+2} b_{4k+3} | \dots$

The STC encoder groups the bits into non-overlapping blocks of four bits each as indicated by the vertical lines. The STC encoder produces two bit streams in parallel: \mathbf{b}_0 , which is applied to antenna 0, and \mathbf{b}_1 , which is applied to antenna 1. The relationship between the input bit sequence and these two bit sequences is

$$\mathbf{b}_{0} = b_{0}b_{1}\overline{b}_{2}b_{3} | b_{4}b_{5}\overline{b}_{6}b_{7} | \dots | b_{4k}b_{4k+1}\overline{b}_{4k+2}b_{4k+3} | \dots \\ \mathbf{b}_{1} = b_{2}b_{3}b_{0}\overline{b}_{1} | b_{6}b_{7}b_{4}\overline{b}_{5} | \dots | b_{4k+2}b_{4k+3}b_{4k}\overline{b}_{4k+1} | \dots$$

where \overline{b}_n is the logical complement of bit b_n .

An important point here is the notion of even- and odd-indexed bits. The SOQPSK-TG modulator treats even-indexed and odd-indexed bits slightly differently. Each code block must begin with an even-indexed bit.

An example of encoding is as follows. Suppose the input bit sequence is

```
10110100
```

The two STC encoded bit sequences are

 $\mathbf{b}_0 = 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \\ \mathbf{b}_1 = 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \\$

To make provision for the estimation of frequency offset, differential timing, and the channels, a block of known bits, called pilot bits, is periodically inserted into each of the two bit streams. A 128-bit pilot block is inserted every 3200 Alamouti-encoded bits. The pilot bits inserted into \mathbf{b}_0 bit stream are denoted \mathbf{p}_0 and the bit pilot bits inserted into the \mathbf{b}_1 bit stream are denoted \mathbf{p}_1 . These pilot bit sequences are

A notional diagram illustrating how \mathbf{p}_0 and \mathbf{p}_1 are periodically inserted into \mathbf{b}_0 and \mathbf{b}_1 , respectively, is illustrated in Figure S-2. Note that the bits comprising \mathbf{b}_0 and \mathbf{b}_1 may change with every occurrence as defined by the input data, but the pilot bits \mathbf{p}_0 and \mathbf{p}_1 do not change with each occurrence.

Figure S-2. Notional Diagram Illustrating the Periodic Insertion of 128 Pilot Bits Every 3200 Alamouti-Encoded Bits

2.0 Modulation

The bit sequences described in the previous section are modulated by a pair of SOQPSK-TG modulators (or modulator/transmitters). The modulators should be constructed and used as follows.

- The modulators share a common clock. This common clock is 26/25 times the input clock to accommodate the periodic insertion of 128 pilot bits every 3200 Alamouti-encoded bits.
- The modulators should share a common carrier reference. If this is not possible, the two carrier references should be phase-locked ideally, or frequency-locked at a minimum.
- Randomization, if required, should be applied before the STC encoder.
- Differential encoding should be disabled. The periodically inserted pilot bits are to be used by the demodulator to estimate the magnitudes and phases of the antenna-0-to-receiver channel and the antenna-1-to-receiver channel. There is no need to use differential encoding because data-aided phase estimates do not possess a phase ambiguity.²

<u>Figure S-3</u> is a notional block diagram that shows the relationship between the input data and clock, the bit-level space-time encoder, the periodic pilot bit insertion, and the SOQPSK-TG modulation.

² M. Rice. *Digital Communications: A Discrete-Time Approach*. Pearson/Prentice-Hall. Upper Saddle River, NJ, 2009.

Figure S-3. A Notional Block Diagram of the Space-Time Code Transmitter

3.0 Resources

Jensen, et al.³ first described the application of space-time coding to the two-antenna problem. Experimental flights confirmed the effectiveness of the technique.^{4,5,6}

³ Jensen, M., M. Rice, and A. Anderson. "Aeronautical Telemetry Using Multiple-Antenna Transmitters." *IEEE Transactions on Aerospace and Electronic Systems*, vol. 43, no. 1, pp. 262-272, January 2007.

⁴ M. Rice, "Space-Time Coding for Aeronautical Telemetry: Part 1 – System Description," in *Proceedings of the International Telemetering Conference*, Las Vegas, NV, October 2011.

⁵ Rice, M. and K. Temple, "Space-Time Coding for Aeronautical Telemetry: part II – Experimental Results," in *Proceedings of the International Telemetering Conference*, Las Vegas, NV, October 2011.

⁶ K. Temple, "Performance Evaluation of Space-Time coding on an Airborne Test Platform," in *Proceedings of the International Telemetering Conference*, forthcoming.

References

- Jensen, M., M. Rice, and A. Anderson. "Aeronautical Telemetry Using Multiple-Antenna Transmitters." *IEEE Transactions on Aerospace and Electronic Systems*, vol. 43, no. 1, pp. 262-272, January 2007.
- K. Temple. "Performance Evaluation of Space-Time coding on an Airborne Test Platform," in *Proceedings of the International Telemetering Conference*, forthcoming.
- M. Rice. *Digital Communications: A Discrete-Time Approach*. Pearson/Prentice-Hall. Upper Saddle River, NJ, 2009.
- Rice, M. and K. Temple, "Space-Time Coding for Aeronautical Telemetry: part II Experimental Results," in *Proceedings of the International Telemetering Conference*, Las Vegas, NV, October 2011.
- S. Alamouti. "A Simple Transmit Diversity Technique for Wireless Communications." *IEEE Journal on Selected Areas in Communications*, vol. 16, no. 8, pp. 1451-1458, October 1998.

**** END OF APPENDIX S ****