
Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

APPENDIX P

DERIVED PARAMETER SPECIFICATION

Paragraph Title Page

1.0 Derived Parameter Definition .. P-1

2.0 Derived Algorithm Grammar: Components ... P-1

3.0 Operators .. P-2

4.0 Numeric Constants ... P-4

5.0 Measurements .. P-5

6.0 Mathematical Functions ... P-5

7.0 Derived Grammar Syntax Overview ... P-7

8.0 Grammar Examples ... P-8

9.0 Telemetry Attributes Transfer Standard (TMATS) Examples P-13

10.0 Glossary of Terms .. P-17

LIST OF FIGURES

Figure P-1. Grammar syntax. .. P-7

Figure P-2. Yacc Grammar example. ... P-9

Figure P-3. Lex Grammar example. ... P-11

Figure P-4. Example program (main). .. P-12

 LIST OF TABLES

Table P-1. Arithmetic Operators ... P-2

Table P-2. Bit Manipulation Operators ... P-2

Table P-3. Relational Operators .. P-3

Table P-4. Ternary (If Then Else) Operator .. P-3

Table P-5. Associativity Operator ... P-3

Table P-6. Precedence and Associativity of Operators From Highest to Lowest P-4

Table P-7. Numeric Constants (Examples) ... P-4

Table P-8. Measurements (Examples) ... P-5

Table P-9. Table of Selected Mathematical Functions .. P-6

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 ii

This page intentionally left blank.

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-1

APPENDIX P

DERIVED PARAMETER SPECIFICATION

1.0 Derived Parameter Definition

 Derived parameters are measurements that do not appear in any data stream; instead, they

are calculated from telemetry measurements in a data stream, numeric constants, and/or other

derived measurements. In a Telemetry Attributes Transfer Standard (TMATS) file, derived

measurements will only have entries in the C group; the other TMATS groups containing

measurement names that link to C group entries only include telemetry measurements.

 Derived parameters are defined using the Algorithm Type (C-d\DPAT) and Algorithm

(C-d\DPA) attributes in the Derived Parameter section of the TMATS C group. They can be

defined in one of two methods. The first method to specify the name of an algorithm (“function

style”) and the second method is to specify a text string of the algorithm itself (“formula style”).

Both of these methods are currently used in telemetry processing systems.

 In function style, Algorithm Type is set to “N” and Algorithm contains the name of a

function, which will be one of the mathematical functions or operators as defined in the derived

algorithm grammar shown in this appendix. The Input Measurand attributes (C-d\DP\N and

C-d\DP-n) and Input Constant attributes (C-d\DPC\N and C-d\DPC-n) are used to specify the

arguments needed by the named function (measurements and numeric constants, respectively, as

defined in the derived algorithm grammar in this appendix). The Trigger Measurand and

Number of Occurrences attributes are used to specify when and how often the derived parameter

will be calculated.

 In formula style, Algorithm Type is set to “A” and Algorithm contains the actual

function, given according to the derived algorithm grammar defined in this appendix. The Input

Measurand attributes and Input Constant attributes are not used. The Trigger Measurand and

Number of Occurrences attributes are used to specify when and how often the derived parameter

will be calculated.

2.0 Derived Algorithm Grammar: Components

 Derived algorithm grammar is from the four components listed below. The derived

algorithm may be any combination of operators, functions, measurements, and numeric constants

strung together using the guidelines in this document to create complex mathematical

expressions (see paragraph 6.0.2). Sample syntaxes for the Yet Another Compiler Compiler

(Yacc) grammar and Lexicon (Lex) grammar are provided in paragraph 8.0.

a. Operators. (paragraph 3.0)

b. Numeric Constants. (paragraph 4.0)

c. Measurements. (paragraph 5.0)

d. Mathematical Functions. (paragraph 6.0).

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-2

3.0 Operators

 Operators are simply mathematical functions that have a special syntax in the grammar.

They have operator symbol(s) that have well-defined arguments and return a value as a result.

Logical operators are merely functions that return a value of 0 and non-zero for false and true

respectively.

3.1 Arithmetic Operators.

TABLE P-1. ARITHMETIC OPERATORS

Operator Description Example

+ Addition (Sum) A + B

- Subtraction (Difference) A – B

* Multiplication (Product) A * B

/ Division (Quotient) A / B

% Modulus (Remainder) A % B

** Exponentiation A ** B

3.2 Bit Manipulation Operators.

TABLE P-2. BIT MANIPULATION OPERATORS

Operator Description Example

| Bit-wise OR A | B

& Bit-wise AND A & B

^ Bit-wise XOR A ^ B

~ Bit-wise NOT ~A

<< Bit-wise Left Shift A << B

>> Bit-wise Right Shift A >> B

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-3

3.3 Relational Operators.

TABLE P-3. RELATIONAL OPERATORS

Operator Description Example

= = Equal To A = = B

!= Not Equal To A != B

<= Less Than or Equal To A <= B

>= Greater Than or Equal To A >= B

< Less Than A < B

> Greater Than A > B

|| Logical OR A || B

&& Logical AND A && B

! Logical NOT (Negation) !A

3.4 Ternary (if then else) Operator.

TABLE P-4. TERNARY (IF THEN ELSE) OPERATOR

Operator Description Example

?: Ternary Operator (if-then-else) A ? B : C

3.5 Associativity Operator.

TABLE P-5. ASSOCIATIVITY OPERATOR

Operator Description Example

() Associativity (A + B) * C

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-4

3.6 Precedence and Associativity of Operators From Highest to Lowest.

TABLE P-6. PRECEDENCE AND ASSOCIATIVITY OF

OPERATORS FROM HIGHEST TO LOWEST

Operators Associativity

() Left to right

-(UNARY) Right to left

! ~ Right to left

** Left to right

& Left to right

^ Left to right

| Left to right

* / % Left to right

+ - Left to right

<< >> Left to right

< > <= >= Left to right

= = != Left to right

&& Left to right

|| Left to right

?: Right to left

, Left to right

4.0 Numeric Constants

 Numeric constants are simply numbers used in the calculations.

TABLE P-7. NUMERIC CONSTANTS (EXAMPLES)

Description Examples

Any string of characters that contains only numerals

1234

0

Any string of characters that contains only numerals and a-f

preceded by "0x" (hex)

0x12ab

0x1

Any string of characters that contains only numerals and a

single ".".

1.2

1.

.2

Any string of characters that contains only numerals, in

scientific notation.

1.0E+10

10E-10

.1e6

Note: As in the TMATS standard itself, alphanumeric data items are case

insensitive; either upper or lower case characters are allowed.

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-5

5.0 Measurements

 Measurements may be telemetry measurements or other derived measurements.

TABLE P-8. MEASUREMENTS (EXAMPLES)

Description Examples

Any string of characters beginning with an alphabetic character

and containing only alphanumerics and "$_"

A00.1

A$1

Any string of characters that is quoted with " and does not

contain ".

"0001"

“measurement ’quoted’,

though this is insane - it

is legal”

Any string of characters quoted with ' and does not contain '. 'Air Speed'

Any string of characters that contains only numerals and at

least one alphabetic character. This differs from hex

because it does not begin with “0x”.

00A1

0X (this is ok, because it

does not have a number

after “0X”)

Note: As in the TMATS standard itself, alphanumeric data items are case insensitive;

either upper or lower case characters are allowed.

6.0 Mathematical Functions

6.1 Mathematical Function Format. Mathematical functions are numerical functions that

take some input, perform a specific calculation, and return a value as the result. Each

mathematical function has the form “name(arg1,arg2,...)” which identifies a well-defined name

and contains argument(s) that are separated by commas and surrounded by parentheses. A list of

selected mathematical functions is provided at Table P-9.

6.2 Complex Use of Functions. Examples of how functions can be used in mathematical

expressions are:

a. A*(SIN(B/C)+D)

b. A*3.0

c. "0001"*A+~B

d. A<B || B<<C ? D : E

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-6

TABLE P-9. TABLE OF SELECTED MATHEMATICAL FUNCTIONS

Name Description

acos(x) cos
-1

(x) in range [0,π], x Є [-1,1].

asin(x) sin
-1

(x) in range [-π/2, π/2], x Є [-1,1].

atan(x) tan
-1

(x) in range [-π/2, π/2]

atan2(y,x) tan
-1

(y/x) in range [-π, π]

ceil(x) smallest integer not less than x

cos(x) cosine of x

cosh(x) hyperbolic cosine of x

exp(x) exponential function, computes e
x

fabs(x) absolute value |x|

floor(x) largest integer not greater than x

fmod(x) floating point remainder

frexpx(d) Find x in [.5,1] and y so that d = x*pow(2,y), return x

frexpy(d) Find x in [.5,1] and y so that d = x*pow(2,y), return y

ldexp(d,i) returns d*pow(2,i)

log(x) natural logarithm ln(x), x > 0

log10(x) base-10 logarithm log10(x), x > 0

max(x,y) if x>y, then return x, else return y

min(x,y) if x<y, then return x, else return y

modfd(d) returns integral part of d

modfp(d) returns fractional part of d

pow(x,y) compute a value taken to an exponent, x
y
. An error occurs

when x<=0 and y <= 0 or x < 0 and y is not an integer

sin(x) sine of x

sinh(x) hyperbolic sine of x

sqrt(x) square root √x, x>= 0

tan(x) tangent of x

tanh(x) hyperbolic tangent of x

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-7

7.0 Derived Grammar Syntax Overview

 The following grammar, strictly speaking, does not match the C language. Although

loosely based on C, the grammar attempts to follow the “spirit” of the C language. The grammar

contains three terminal symbols (MEASUREMENT, NUMERIC_CONSTANT and

FUNCTION_NAME) not defined here, but easily understood by their names. The grammar

contains two non-terminals, expression and expression-list, which define the entire grammar.

The “|” operator used in the grammar denotes a choice meaning “this or that or …” Quoted

strings are literal tokens of the grammar.

expression:

 expression '+' expression

 | expression '-' expression

 | expression '*' expression

 | expression '/' expression

 | expression '|' expression

 | expression '&' expression

 | expression '%' expression

 | expression '**' expression

 | expression '?' expression ':' expression

 | expression '<' expression

 | expression '>' expression

 | expression '<=' expression

 | expression '>=' expression

 | expression '!=' expression

 | expression '==' expression

 | expression '&&' expression

 | expression '||' expression

 | '-' expression

 | '!' expression

 | '~' expression

 | ' (' expression ') '

 | MEASUREMENT

 | NUMERIC_CONSTANT

 | FUNCTION_NAME '(' expression_list ')'

 | FUNCTION_NAME ' (' ')'

 expression-list:

 expression

 | expression-list ',' expression

Figure P-1. Grammar syntax.

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-8

8.0 Grammar Examples

 Examples of Yacc and Lex grammar are shown in Figure P-2 and Figure P-3,

respectively. The grammar will recognize the derived syntax; that is, they will report whether or

not a given text string is valid syntax. However, the examples are not intended to be complete;

in other words, they will not compile or perform the calculation. However, the user needs only

to build a program around them in order to use them; a simple example “main” is shown in

Figure P-4.

.

 The Yacc is a parser generator developed by Stephen C. Johnson at American Telephone

and Telegraph (AT&T) for the Unix operating system. It generates a parser, in C language code,

based on an analytic grammar written in a notation similar to Backus-Naur Form (BNF). The

Lex, a program that generates lexical analyzers, is commonly used along with the Yacc parser

generator. Originally written by Eric Schmidt and Mike Lesk, Lex is the standard lexical

analyzer generator on many Unix systems. A tool exhibiting its behavior is specified as part of

the Portable Operating System Interface (POSIX) standard.

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-9

%{

%}

%token ERR

%token NAME

%token CONSTANT

// Operator Precedence Rules (Lowest First, Highest Last)

%left ','

%right COND '?'

%left OR

%left AND

%left EQUAL NOTEQUAL

%left '<' '>' LESSEQUAL GREATEREQUAL

%left LSHIFT RSHIFT

%left '-' '+'

%left '*' '/' '%'

%left '|'

%left '^'

%left '&'

%left POWER

%right '!' '~'

%right UMINUS

// Definition of Rules

%%

expression:

 expression '+' expression

 | expression '-' expression

 | expression '*' expression

 | expression '^' expression

 | expression '&' expression

 | expression '%' expression

 | expression LSHIFT expression

 | expression RSHIFT expression

 | expression POWER expression

 | expression '?' expression ':' expression %prec COND

Figure P-2. Yacc Grammar example. Page 1 x 2

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-10

 | '-' expression %prec UMINUS

 | '!' expression

 | '~' expression

 | '(' expression ')'

 | NAME

 | CONSTANT

 | NAME '(' expression_list ')'

 | NAME '(' ')'

 | expression '<' expression

 | expression '>' expression

 | expression LESSEQUAL expression

 | expression GREATEREQUAL expression

 | expression NOTEQUAL expression

 | expression EQUAL expression

 | expression OR expression

 | expression AND expression

 ;

expression_list:

 expression

 | expression_list ',' expression

 ;

%%

 Figure P-2. Yacc Grammar example. Page 2 x 2

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-11

%{

#include “y.tab.h”

%}

%%

[\t\n] {}

\=\= { return(EQUAL); } // Equal To

\!\= { return(NOTEQUAL); } // Not Equal To

\<\= { return(LESSEQUAL); } // Less Than or Equal To

\>\= { return(GREATEREQUAL); } // Greater Than or Equal To

(**) { return(POWER); } // Power (FORTRANish)

\|\| { return(OR); } // Logical OR

\&\& { return(AND); } // Logical AND

\<\< { return(LSHIFT); } // Bitwise Left Shift

\>\> { return(RSHIFT); } // Bitwise Right Shift

\> | // Greather Than

\< | // Less Than

\! | // Logical Negation

\? | // Ternary Operator ?

\: | // Ternary Operator :

\% | // Modulus (Remainder)

\, | // Comma Operator (function)

* | // Multiplication (Product)

\/ | // Division (Quotient)

\+ | // Addition (Sum)

\- | // Subtraction (Difference)

\| | // Bitwise OR

\& | // Bitwise AND

\^ | // Bitwise XOR

\~ | // Bitwise NOT

\(|

\) { return(yytext[0]); }

Figure P-3. Lex Grammar example. Page 1 x 2

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-12

([0][xX][0-9a-fA-F]+)|([0-9]+) {

 return(CONSTANT);

 }

(([0-9]+\.?[0-9]*)|([0-9]*\.[0-9]+))([eE][-+]?[0-9]+)? {

 return(CONSTANT);

 }

\"[^\"\n]*\" |

\'[^'\n]*\' {

 return(NAME);

 }

([0-9]+[a-zA-Z])?[a-zA-Z0-9$_\.]+ {

 return(NAME);

 }

. { return(ERR); } // Catchall Error

%%

 Figure P-3. Lex Grammar. Page 2 x 2

yywrap()

{

 return 1;

}

yyerror(char *s)

{

 printf("error: %s\n",s);

}

main()

{

 yyparse();

}

Figure P-4. Example program (main).

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-13

9.0 Telemetry Attributes Transfer Standard (TMATS) Examples

 In the following examples, input measurement names are in the form of MA, MB, and

MC. Derived parameter names are in the form of DMA, DMB, and DMC.

9.1 TMATS Example 1:

DMA = MA + MB

Function style

C-1\DCN:DMA; Derived parameter

C-1\DCT:DER; Derived conversion type

C-1\DPAT:N; Name of algorithm will be given

C-1\DPA:+; Addition operator

C-1\DPTM:MB; Measurement MB triggers the calculation

C-1\DPNO:1; Every sample of MB triggers the calculation

C-1\DP\N:2; Two input measurements

C-1\DP-1:MA;

C-1\DP-2:MB;

Formula style

C-2\DCN:DMA;

C-2\DCT:DER;

C-2\DPAT:A; Algorithm will be given

C-2\DPA:MA + MB; Algorithm syntax

C-2\DPTM:MB;

C-2\DPNO:1;

9.2 TMATS Example 2.

DMB = MC / MD

Function style

C-3\DCN:DMB; Derived parameter

C-3\DCT:DER; Derived conversion type

C-3\DPAT:N; Name of algorithm will be given

C-3\DPA:/; Division operator

C-3\DPTM:MD; Measurement MD triggers the calculation

C-3\DPNO:1; Every sample of MD triggers the calculation

C-3\DP\N:2; Two input measurements

C-3\DP-1:MC;

C-3\DP-2:MD;

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-14

Note : In function style, the algorithm determines the meaning of the input

measurements. In this example, the division algorithm assigns the first input

measurement as the dividend and the second input measurement as the divisor.

Formula style

C-4\DCN:DMB;

C-4\DCT:DER;

C-4\DPAT:A; Algorithm will be given

C-4\DPA:MC / MD; Algorithm syntax

C-4\DPTM:MD;

C-4\DPNO:1;

9.3 TMATS Example 3.

DMC = square root of ME

Function style

C-5\DCN:DMC; Derived parameter

C-5\DCT:DER; Derived conversion type

C-5\DPAT:N; Name of algorithm will be given

C-5\DPA:SQRT; Square root function

C-5\DP\N:1; One input measurement

C-5\DP-1:ME;

Formula style

C-6\DCN :DMC;

C-6\DCT :DER;

C-6\DPAT:A; Algorithm will be given

C-6\DPA:SQRT(ME); Algorithm syntax

Note : The trigger measurand is not given ; there is only one input, which must

trigger the calculation.

9.4 TMATS Example 4.

DMD = MF*(SIN(MG/MH)+MJ)

Function style

C-7\DCN:XA; Derived parameter

C-7\DCT:DER; Derived conversion type

C-7\DPAT:N; Name of algorithm will be given

C-7\DPA:/; Division operator

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-15

C-7\DP\N:2; Two input measurements

C-7\DP-1:MG;

C-7\DP-2:MH;

C-8\DCN:XB; Derived parameter

C-8\DCT:DER; Derived conversion type

C-8\DPAT:N; Name of algorithm will be given

C-8\DPA:SIN; Sine function

C-8\DP\N:1; One input measurement

C-8\DP-1:XA;

C-9\DCN:XC; Derived parameter

C-9\DCT:DER; Derived conversion type

C-9\DPAT:N; Name of algorithm will be given

C-9\DPA:+; Addition operator

C-9\DP\N:2; Two input measurements

C-9\DP-1:XB;

C-9\DP-2:MJ;

C-10\DCN:DMD; Derived parameter

C-10\DCT:DER; Derived conversion type

C-10\DPAT:N; Name of algorithm will be given

C-10\DPA:*; Multiplication operator

C-10\DP\N:2; Two input measurements

C-10\DP-1:MF;

C-10\DP-2:XC;

Note: In this example, several steps are needed, each generating an intermediate

result (XA, XB, and XC), before the derived parameter is obtained. This method

is shown only for illustrative purposes and is not recommended. If this function is

needed, a custom algorithm should be written to implement it. Then the function

style could be used, as follows:

C-11\DCN:DMD; Derived parameter

C-11\DCT:DER; Derived conversion type

C-11\DPAT:N; Name of algorithm will be given

C-11\DPA:NEWALG; Name of custom algorithm

C-11\DPTM:MJ;

C-11\DPNO:1;

C-11\DP\N:4; Four input measurements

C-11\DP-1:MF;

C-11\DP-2:MG;

C-11\DP-3:MH;

C-11\DP-4:MJ;

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-16

Formula style

C-12\DCN:DMD;

C-12\DCT:DER;

C-12\DPAT:A; Algorithm will be given

C-12\DPA:MF*(SIN(MG/MH)+MJ);

C-12\DPTM:MJ;

C-12\DPNO:1;

Telemetry Standards, IRIG Standard 106-11 (Part 1), Appendix P, June 2011

 P-17

10.0 Glossary of Terms

Backus-Naur Form (BNF): A metasyntax used to express context-free grammar; that is, a

formal way to describe formal languages. John Backus and Peter Naur developed a context free

grammar to define the syntax of a programming language by using two sets of rules: i.e., lexical

rules and syntactic rules

Compiler: A computer program (or set of programs) that transforms source code written in a

computer language (the source language) into another computer language (the target language,

often having a binary form known as object code).

Compiler Compiler (Compiler Generator): A tool that creates a parser, interpreter, or

compiler from some form of formal description. The earliest and still most common form of

compiler-compiler is a parser generator, whose input is a grammar (usually in BNF) of a

programming language, and whose generated output is the source code of a parser.

Computer Programs: Also called software programs, or just programs, are instructions for a

computer.

Grammar: A set of formation rules that describe which strings formed from the alphabet of a

formal language are syntactically valid within the language.

Interpreter: Normally means a computer program that executes instructions written in a

programming language.

Parser Generator: See Compiler Compiler.

Parsing: The process of analyzing a sequence of tokens (for example, words) to determine their

grammatical structure with respect to a given (more or less) formal grammar.

Programming Language: A machine-readable artificial language designed to express

computations that can be performed by a machine, particularly a computer.

Source Code: Any collection of statements or declarations written in some human-readable

computer programming language.

Unix: A computer operating system originally developed in 1969 by a group of AT&T

employees at Bell Labs.

Yet Another: In hacker jargon, the use of yet another as a way of padding out an acronym is

fairly common. It was first used by Stephen C. Johnson in the late 1970s in naming Yacc as a

humorous reference to the proliferation of such compiler-compilers at the time.

Yet Another Compiler Compiler (Yacc): Supplied with Unix and Unix-like systems.

http://en.wikipedia.org/wiki/Interpreter_(computer_software)
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/American_Telephone_%26_Telegraph
http://en.wikipedia.org/wiki/Bell_Labs

