
Telemetry Standard RCC Document 106-09, Appendix P, April 2009

APPENDIX P

DERIVED PARAMETER SPECIFICATION

Paragraph Title Page

1.0 Derived Parameter Definition..P-1
2.0 Derived Algorithm Grammar: Components ...P-1
3.0 Operators..P-2
4.0 Numeric Constants...P-4
5.0 Measurements ..P-5
6.0 Mathematical Functions...P-5
7.0 Derived Grammar Syntax Overview ...P-7
8.0 Grammar Examples ...P-8
9.0 Telemetry Attributes Transfer Standard (TMATS) ExamplesP-13
10.0 Glossary of Terms..P-17

LIST OF FIGURES

Figure P-1. Grammar syntax...P-7
Figure P-2. Yacc Grammar example. ...P-9
Figure P-3. Lex Grammar example. ...P-11
Figure P-4. Example program (main). ..P-12

 LIST OF TABLES

Table P-1. Arithmetic Operators ...P-2
Table P-2. Bit Manipulation Operators ...P-2
Table P-3. Relational Operators ..P-3
Table P-4. Ternary (If Then Else) Operator ..P-3
Table P-5. Associativity Operator ...P-3
Table P-6. Precedence and Associativity of Operators From Highest to LowestP-4
Table P-7. Numeric Constants (Examples) ...P-4
Table P-8. Measurements (Examples)...P-5
Table P-9. Table of Selected Mathematical Functions..P-6

APPENDIX P IS A NEW APPENDIX
(APRIL 2009)

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

 ii

This page intentionally left blank.

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

APPENDIX P

DERIVED PARAMETER SPECIFICATION

1.0 Derived Parameter Definition

 Derived parameters are measurements that do not appear in any data stream; instead, they
are calculated from telemetry measurements in a data stream, numeric constants, and/or other
derived measurements. In a Telemetry Attributes Transfer Standard (TMATS) file, derived
measurements will only have entries in the C group; the other TMATS groups containing
measurement names that link to C group entries only include telemetry measurements.

 Derived parameters are defined using the Algorithm Type (C-d\DPAT) and Algorithm
(C-d\DPA) attributes in the Derived Parameter section of the TMATS C group. They can be
defined in one of two methods. The first method to specify the name of an algorithm (“function
style”) and the second method is to specify a text string of the algorithm itself (“formula style”).
Both of these methods are currently used in telemetry processing systems.

 In function style, Algorithm Type is set to “N” and Algorithm contains the name of a
function, which will be one of the mathematical functions or operators as defined in the derived
algorithm grammar shown in this appendix. The Input Measurand attributes (C-d\DP\N and
C-d\DP-n) and Input Constant attributes (C-d\DPC\N and C-d\DPC-n) are used to specify the
arguments needed by the named function (measurements and numeric constants, respectively, as
defined in the derived algorithm grammar in this appendix). The Trigger Measurand and
Number of Occurrences attributes are used to specify when and how often the derived parameter
will be calculated.

 In formula style, Algorithm Type is set to “A” and Algorithm contains the actual
function, given according to the derived algorithm grammar defined in this appendix. The Input
Measurand attributes and Input Constant attributes are not used. The Trigger Measurand and
Number of Occurrences attributes are used to specify when and how often the derived parameter
will be calculated.

2.0 Derived Algorithm Grammar: Components

 Derived algorithm grammar is from the four components listed below. The derived
algorithm may be any combination of operators, functions, measurements, and numeric constants
strung together using the guidelines in this document to create complex mathematical
expressions (see paragraph 6.0.2). Sample syntaxes for the Yet Another Compiler Compiler
(Yacc) grammar and Lexicon (Lex) grammar are provided in paragraph 8.0.

a. Operators. (paragraph 3.0)
b. Numeric Constants. (paragraph 4.0)
c. Measurements. (paragraph 5.0)
d. Mathematical Functions. (paragraph 6.0).

 P-1

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

3.0 Operators

 Operators are simply mathematical functions that have a special syntax in the grammar.
They have operator symbol(s) that have well-defined arguments and return a value as a result.
Logical operators are merely functions that return a value of 0 and non-zero for false and true
respectively.

3.1 Arithmetic Operators.

TABLE P-1. ARITHMETIC OPERATORS

Operator Description Example
+ Addition (Sum) A + B
- Subtraction (Difference) A – B
* Multiplication (Product) A * B
/ Division (Quotient) A / B

% Modulus (Remainder) A % B
** Exponentiation A ** B

3.2 Bit Manipulation Operators.

TABLE P-2. BIT MANIPULATION OPERATORS

Operator Description Example
| Bit-wise OR A | B

& Bit-wise AND A & B
^ Bit-wise XOR A ^ B
~ Bit-wise NOT ~A

<< Bit-wise Left Shift A << B
>> Bit-wise Right Shift A >> B

 P-2

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

3.3 Relational Operators.

TABLE P-3. RELATIONAL OPERATORS

Operator Description Example
= = Equal To A = = B
!= Not Equal To A != B
<= Less Than or Equal To A <= B
>= Greater Than or Equal To A >= B
< Less Than A < B
> Greater Than A > B
|| Logical OR A || B

&& Logical AND A && B
! Logical NOT (Negation) !A

3.4 Ternary (if then else) Operator.

TABLE P-4. TERNARY (IF THEN ELSE) OPERATOR

Operator Description Example
?: Ternary Operator (if-then-else) A ? B : C

3.5 Associativity Operator.

TABLE P-5. ASSOCIATIVITY OPERATOR

Operator Description Example
() Associativity (A + B) * C

 P-3

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

3.6 Precedence and Associativity of Operators From Highest to Lowest.

TABLE P-6. PRECEDENCE AND ASSOCIATIVITY OF
OPERATORS FROM HIGHEST TO LOWEST

Operators Associativity
() Left to right

-(UNARY) Right to left
! ~ Right to left
** Left to right
& Left to right
^ Left to right
| Left to right

* / % Left to right
+ - Left to right

<< >> Left to right
< > <= >= Left to right

= = != Left to right
&& Left to right

|| Left to right
?: Right to left
, Left to right

4.0 Numeric Constants

 Numeric constants are simply numbers used in the calculations.

TABLE P-7. NUMERIC CONSTANTS (EXAMPLES)

Description Examples

Any string of characters that contains only numerals

1234
0

Any string of characters that contains only numerals and a-f
preceded by "0x" (hex)

0x12ab
0x1

Any string of characters that contains only numerals and a
single ".".

1.2
1.
.2

Any string of characters that contains only numerals, in
scientific notation.

1.0E+10
10E-10
.1e6

Note: As in the TMATS standard itself, alphanumeric data items are case
insensitive; either upper or lower case characters are allowed.

 P-4

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

5.0 Measurements

 Measurements may be telemetry measurements or other derived measurements.

TABLE P-8. MEASUREMENTS (EXAMPLES)

Description Examples

Any string of characters beginning with an alphabetic charac
and containing only alphanumerics and "$_"

A00.1
A$1

Any string of characters that is quoted with " and does not
contain ".

"0001"
“measurement ’quoted’,

though this is insane - it
is legal”

Any string of characters quoted with ' and does not contain '. 'Air Speed'

Any string of characters that contains only numerals and at
least one alphabetic character. This differs from hex
because it does not begin with “0x”.

00A1
0X (this is ok, because it

does not have a number
after “0X”)

Note: As in the TMATS standard itself, alphanumeric data items are case insensitive;
either upper or lower case characters are allowed.

6.0 Mathematical Functions

6.1 Mathematical Function Format. Mathematical functions are numerical functions that
take some input, perform a specific calculation, and return a value as the result. Each
mathematical function has the form “name(arg1,arg2,...)” which identifies a well-defined name
and contains argument(s) that are separated by commas and surrounded by parentheses. A list of
selected mathematical functions is provided at Table P-9.

6.2 Complex Use of Functions. Examples of how functions can be used in mathematical
expressions are:

a. A*(SIN(B/C)+D)
b. A*3.0
c. "0001"*A+~B
d. A<B || B<<C ? D : E

 P-5

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

TABLE P-9. TABLE OF SELECTED MATHEMATICAL FUNCTIONS

Name Description

acos(x) cos-1(x) in range [0,π], x Є [-1,1].
asin(x) sin-1(x) in range [-π/2, π/2], x Є [-1,1].
atan(x) tan-1(x) in range [-π/2, π/2]
atan2(y,x) tan-1(y/x) in range [-π, π]
ceil(x) smallest integer not less than x
cos(x) cosine of x
cosh(x) hyperbolic cosine of x
exp(x) exponential function, computes ex
fabs(x) absolute value |x|
floor(x) largest integer not greater than x
fmod(x) floating point remainder
frexpx(d) Find x in [.5,1] and y so that d = x*pow(2,y), return x
frexpy(d) Find x in [.5,1] and y so that d = x*pow(2,y), return y
ldexp(d,i) returns d*pow(2,i)
log(x) natural logarithm ln(x), x > 0
log10(x) base-10 logarithm log10(x), x > 0
max(x,y) if x>y, then return x, else return y
min(x,y) if x<y, then return x, else return y
modfd(d) returns integral part of d
modfp(d) returns fractional part of d
pow(x,y) compute a value taken to an exponent, xy. An error occurs

when x<=0 and y <= 0 or x < 0 and y is not an integer
sin(x) sine of x
sinh(x) hyperbolic sine of x
sqrt(x) square root √x, x>= 0
tan(x) tangent of x
tanh(x) hyperbolic tangent of x

 P-6

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

7.0 Derived Grammar Syntax Overview

 The following grammar, strictly speaking, does not match the C language. Although
loosely based on C, the grammar attempts to follow the “spirit” of the C language. The grammar
contains three terminal symbols (MEASUREMENT, NUMERIC_CONSTANT and
FUNCTION_NAME) not defined here, but easily understood by their names. The grammar
contains two non-terminals, expression and expression-list, which define the entire grammar.
The “|” operator used in the grammar denotes a choice meaning “this or that or …” Quoted
strings are literal tokens of the grammar.

expression:
 expression '+' expression
 | expression '-' expression
 | expression '*' expression
 | expression '/' expression
 | expression '|' expression
 | expression '&' expression
 | expression '%' expression
 | expression '**' expression
 | expression '?' expression ':' expression
 | expression '<' expression
 | expression '>' expression
 | expression '<=' expression
 | expression '>=' expression
 | expression '!=' expression
 | expression '==' expression
 | expression '&&' expression
 | expression '||' expression
 | '-' expression
 | '!' expression
 | '~' expression
 | ' (' expression ') '
 | MEASUREMENT
 | NUMERIC_CONSTANT
 | FUNCTION_NAME '(' expression_list ')'
 | FUNCTION_NAME ' (' ')'

 expression-list:
 expression
 | expression-list ',' expression

Figure P-1. Grammar syntax.

 P-7

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

8.0 Grammar Examples

 Examples of Yacc and Lex grammar are shown in Figure P-2 and Figure P-3,
respectively. The grammar will recognize the derived syntax; that is, they will report whether or
not a given text string is valid syntax. However, the examples are not intended to be complete;
in other words, they will not compile or perform the calculation. However, the user needs only
to build a program around them in order to use them; a simple example “main” is shown in
Figure P-4.
.
 The Yacc is a parser generator developed by Stephen C. Johnson at American Telephone
and Telegraph (AT&T) for the Unix operating system. It generates a parser, in C language code,
based on an analytic grammar written in a notation similar to Backus-Naur Form (BNF). The
Lex, a program that generates lexical analyzers, is commonly used along with the Yacc parser
generator. Originally written by Eric Schmidt and Mike Lesk, Lex is the standard lexical
analyzer generator on many Unix systems. A tool exhibiting its behavior is specified as part of
the Portable Operating System Interface (POSIX) standard.

 P-8

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

%{

%}

%token ERR
%token NAME
%token CONSTANT

// Operator Precedence Rules (Lowest First, Highest Last)

%left ','
%right COND '?'
%left OR
%left AND
%left EQUAL NOTEQUAL
%left '<' '>' LESSEQUAL GREATEREQUAL
%left LSHIFT RSHIFT
%left '-' '+'
%left '*' '/' '%'
%left '|'
%left '^'
%left '&'
%left POWER
%right '!' '~'
%right UMINUS

// Definition of Rules

%%
expression:
 expression '+' expression
 | expression '-' expression
 | expression '*' expression
 | expression '^' expression
 | expression '&' expression
 | expression '%' expression
 | expression LSHIFT expression
 | expression RSHIFT expression
 | expression POWER expression
 | expression '?' expression ':' expression %prec COND

Figure P-2. Yacc Grammar example. Page 1 x 2

 P-9

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

 | '-' expression %prec UMINUS
 | '!' expression
 | '~' expression
 | '(' expression ')'
 | NAME
 | CONSTANT
 | NAME '(' expression_list ')'
 | NAME '(' ')'
 | expression '<' expression
 | expression '>' expression
 | expression LESSEQUAL expression
 | expression GREATEREQUAL expression
 | expression NOTEQUAL expression
 | expression EQUAL expression
 | expression OR expression
 | expression AND expression
 ;

expression_list:
 expression
 | expression_list ',' expression
 ;

%%

 Figure P-2. Yacc Grammar example. Page 2 x 2

 P-10

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

%{
#include “y.tab.h”
%}

%%

[\t\n] {}

\=\= { return(EQUAL); } // Equal To
\!\= { return(NOTEQUAL); } // Not Equal To
\<\= { return(LESSEQUAL); } // Less Than or Equal To
\>\= { return(GREATEREQUAL); } // Greater Than or Equal To
(**) { return(POWER); } // Power (FORTRANish)
\|\| { return(OR); } // Logical OR
\&\& { return(AND); } // Logical AND
\<\< { return(LSHIFT); } // Bitwise Left Shift
\>\> { return(RSHIFT); } // Bitwise Right Shift

\> | // Greather Than
\< | // Less Than
\! | // Logical Negation
\? | // Ternary Operator ?
\: | // Ternary Operator :
\% | // Modulus (Remainder)
\, | // Comma Operator (function)
* | // Multiplication (Product)
\/ | // Division (Quotient)
\+ | // Addition (Sum)
\- | // Subtraction (Difference)
\| | // Bitwise OR
\& | // Bitwise AND
\^ | // Bitwise XOR
\~ | // Bitwise NOT
\(|
\) { return(yytext[0]); }

Figure P-3. Lex Grammar example. Page 1 x 2

 P-11

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

([0][xX][0-9a-fA-F]+)|([0-9]+) {
 return(CONSTANT);
 }

(([0-9]+\.?[0-9]*)|([0-9]*\.[0-9]+))([eE][-+]?[0-9]+)? {
 return(CONSTANT);
 }

\"[^\"\n]*\" |
\'[^'\n]*\' {
 return(NAME);
 }
([0-9]+[a-zA-Z])?[a-zA-Z0-9$_\.]+ {
 return(NAME);
 }

. { return(ERR); } // Catchall Error

%%

 Figure P-3. Lex Grammar. Page 2 x 2

yywrap()
{
 return 1;
}
yyerror(char *s)
{
 printf("error: %s\n",s);
}
main()
{
 yyparse();
}

Figure P-4. Example program (main).

 P-12

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

9.0 Telemetry Attributes Transfer Standard (TMATS) Examples

 In the following examples, input measurement names are in the form of MA, MB, and
MC. Derived parameter names are in the form of DMA, DMB, and DMC.

9.1 TMATS Example 1:

DMA = MA + MB

Function style

C-1\DCN:DMA; Derived parameter
C-1\DCT:DER; Derived conversion type
C-1\DPAT:N; Name of algorithm will be given
C-1\DPA:+; Addition operator
C-1\DPTM:MB; Measurement MB triggers the calculation
C-1\DPNO:1; Every sample of MB triggers the calculation
C-1\DP\N:2; Two input measurements
C-1\DP-1:MA;
C-1\DP-2:MB;

Formula style

C-2\DCN:DMA;
C-2\DCT:DER;
C-2\DPAT:A; Algorithm will be given
C-2\DPA:MA + MB; Algorithm syntax
C-2\DPTM:MB;
C-2\DPNO:1;

9.2 TMATS Example 2.

DMB = MC / MD

Function style

C-3\DCN:DMB; Derived parameter
C-3\DCT:DER; Derived conversion type
C-3\DPAT:N; Name of algorithm will be given
C-3\DPA:/; Division operator
C-3\DPTM:MD; Measurement MD triggers the calculation
C-3\DPNO:1; Every sample of MD triggers the calculation
C-3\DP\N:2; Two input measurements
C-3\DP-1:MC;
C-3\DP-2:MD;

 P-13

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

Note : In function style, the algorithm determines the meaning of the input
measurements. In this example, the division algorithm assigns the first input
measurement as the dividend and the second input measurement as the divisor.

Formula style

C-4\DCN:DMB;
C-4\DCT:DER;
C-4\DPAT:A; Algorithm will be given
C-4\DPA:MC / MD; Algorithm syntax
C-4\DPTM:MD;
C-4\DPNO:1;

9.3 TMATS Example 3.

DMC = square root of ME

Function style

C-5\DCN:DMC; Derived parameter
C-5\DCT:DER; Derived conversion type
C-5\DPAT:N; Name of algorithm will be given
C-5\DPA:SQRT; Square root function
C-5\DP\N:1; One input measurement
C-5\DP-1:ME;

Formula style

C-6\DCN :DMC;
C-6\DCT :DER;
C-6\DPAT:A; Algorithm will be given
C-6\DPA:SQRT(ME); Algorithm syntax

Note : The trigger measurand is not given ; there is only one input, which must
trigger the calculation.

9.4 TMATS Example 4.

DMD = MF*(SIN(MG/MH)+MJ)

Function style

C-7\DCN:XA; Derived parameter
C-7\DCT:DER; Derived conversion type
C-7\DPAT:N; Name of algorithm will be given
C-7\DPA:/; Division operator

 P-14

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

C-7\DP\N:2; Two input measurements
C-7\DP-1:MG;
C-7\DP-2:MH;
C-8\DCN:XB; Derived parameter
C-8\DCT:DER; Derived conversion type
C-8\DPAT:N; Name of algorithm will be given
C-8\DPA:SIN; Sine function
C-8\DP\N:1; One input measurement
C-8\DP-1:XA;
C-9\DCN:XC; Derived parameter
C-9\DCT:DER; Derived conversion type
C-9\DPAT:N; Name of algorithm will be given
C-9\DPA:+; Addition operator
C-9\DP\N:2; Two input measurements
C-9\DP-1:XB;
C-9\DP-2:MJ;
C-10\DCN:DMD; Derived parameter
C-10\DCT:DER; Derived conversion type
C-10\DPAT:N; Name of algorithm will be given
C-10\DPA:*; Multiplication operator
C-10\DP\N:2; Two input measurements
C-10\DP-1:MF;
C-10\DP-2:XC;

Note: In this example, several steps are needed, each generating an intermediate
result (XA, XB, and XC), before the derived parameter is obtained. This method
is shown only for illustrative purposes and is not recommended. If this function is
needed, a custom algorithm should be written to implement it. Then the function
style could be used, as follows:

C-11\DCN:DMD; Derived parameter
C-11\DCT:DER; Derived conversion type
C-11\DPAT:N; Name of algorithm will be given
C-11\DPA:NEWALG; Name of custom algorithm
C-11\DPTM:MJ;
C-11\DPNO:1;
C-11\DP\N:4; Four input measurements
C-11\DP-1:MF;
C-11\DP-2:MG;
C-11\DP-3:MH;
C-11\DP-4:MJ;

 P-15

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

Formula style

C-12\DCN:DMD;
C-12\DCT:DER;
C-12\DPAT:A; Algorithm will be given
C-12\DPA:MF*(SIN(MG/MH)+MJ);
C-12\DPTM:MJ;
C-12\DPNO:1;

 P-16

Telemetry Standard RCC Document 106-09, Appendix P, April 2009

 P-17

10.0 Glossary of Terms

Backus-Naur Form (BNF): A metasyntax used to express context-free grammar; that is, a
formal way to describe formal languages. John Backus and Peter Naur developed a context free
grammar to define the syntax of a programming language by using two sets of rules: i.e., lexical
rules and syntactic rules

Compiler: A computer program (or set of programs) that transforms source code written in a
computer language (the source language) into another computer language (the target language,
often having a binary form known as object code).

Compiler Compiler (Compiler Generator): A tool that creates a parser, interpreter, or
compiler from some form of formal description. The earliest and still most common form of
compiler-compiler is a parser generator, whose input is a grammar (usually in BNF) of a
programming language, and whose generated output is the source code of a parser.

Computer Programs: Also called software programs, or just programs, are instructions for a
computer.

Grammar: A set of formation rules that describe which strings formed from the alphabet of a
formal language are syntactically valid within the language.

Interpreter: Normally means a computer program that executes instructions written in a
programming language.

Parser Generator: See Compiler Compiler.

Parsing: The process of analyzing a sequence of tokens (for example, words) to determine their
grammatical structure with respect to a given (more or less) formal grammar.

Programming Language: A machine-readable artificial language designed to express
computations that can be performed by a machine, particularly a computer.

Source Code: Any collection of statements or declarations written in some human-readable
computer programming language.

Unix: A computer operating system originally developed in 1969 by a group of AT&T
employees at Bell Labs.

Yet Another: In hacker jargon, the use of yet another as a way of padding out an acronym is
fairly common. It was first used by Stephen C. Johnson in the late 1970s in naming Yacc as a
humorous reference to the proliferation of such compiler-compilers at the time.

Yet Another Compiler Compiler (Yacc): Supplied with Unix and Unix-like systems.

http://en.wikipedia.org/wiki/Interpreter_(computer_software)
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/American_Telephone_%26_Telegraph
http://en.wikipedia.org/wiki/Bell_Labs

	APPENDIX P
	1.0 Derived Parameter Definition
	2.0 Derived Algorithm Grammar: Components
	3.0 Operators
	4.0 Numeric Constants
	5.0 Measurements
	6.0 Mathematical Functions
	7.0 Derived Grammar Syntax Overview
	8.0 Grammar Examples
	9.0 Telemetry Attributes Transfer Standard (TMATS) Examples
	10.0 Glossary of Terms

